

CONFIDENTIAL

CONFIDENTIAL

MARINE ALL WEATHER ATTACK SQUADRON 533

Marine Aircraft Group 15
1st Marine Aircraft Wing
Fleet Marine Force Pacific
FPO San Francisco, 96602

COMMAND CHRONOLOGY

1 December to 31 December 1972

INDEX

PART I ORGANIZATIONAL DATA

PART II NARRATIVE SUMMARY

PART III SEQUENTIAL LISTING OF SIGNIFICANT EVENTS

PART IV SUPPORTING DOCUMENTS

VMACAW) - 533

Dec 72

Enclosure (1)

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

PART I

ORGANIZATIONAL DATA1. DESIGNATIONCOMMANDER

Marine All Weather Attack Squadron 533

LtCol J. C. BROWN
1-31 December 19722. GEOGRAPHICAL LOCATIONPERIODRoyal Thai Air Force Base
Nam Phong, Thailand

1-31 December 1972

3. STAFF OFFICERS

Executive Officer

Major K. C. BATEMAN
1-31 December 1972

S-1 Officer

Captain D. W. COPELAND
1-31 December 1972

S-2 Officer

Captain B. N. CAVINESS
1-31 December 1972

S-3 Officer

Major M. A. HUFFORD
1-31 December 1972

S-4 Officer

Captain R. L. GARTNER
1-31 December 1972

Maintenance Officer

Captain P. R. HEMMING
1-31 December 1972

Aviation Safety Officer

Captain N. W. MORLEY
1-3 December 1972
1st Lt H. L. TRAUFFER
4-31 December 19724. AVERAGE MONTHLY STRENGTH

	<u>USMC</u>		<u>USN</u>		<u>OTHER</u>	
<u>OFF</u>		<u>ENL</u>		<u>OFF</u>		<u>ENL</u>
33		221		0		0

Enclosure (1)

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

PART II

NARRATIVE SUMMARY

(C) The squadron produced its first full systems capable aircraft since this deployment on 1 December. Since that date the situation has steadily improved and 49 full system sorties have been completed at the close of this reporting period. Full system sorties are defined as those aircraft possessing all systems in an up status over the assigned target. This capability has significantly enhanced the squadron's ability to perform its missions in support of the Government of the Republic of South Vietnam. A study was conducted during December addressing the many factors which have affected A6A systems availability during the current deployment at Nam Phong, RTAFB.

(C) During this month the squadron flew a total of 201 sorties and amassed 363.2 hours. 98 sorties were night combat sorties flown in Route Package One of North Vietnam. By taking full advantage of the increased strike capability due to improved systems availability, many of the missions were flown into stormy monsoonal weather. This was an unexpected decrease in sorties and flight hours from the previous months, and was due, primarily, to a two-day maintenance stand down, a 36 hour Christmas holiday truce, and the cancelling of night missions by higher authority on three different occasions. The remaining 92 combat sorties were flown in the Military Regions of South Vietnam and the Barrel Roll/Steel Tiger areas of Laos. 569.2 tons of ordnance was delivered on these missions and BDA is considered significant although modes of delivery (LORAN and TACAN) and monsoon weather made it difficult to confirm the results of all combat sorties flown.

(C) Tactics in Route Package One were changed due to intensified enemy reaction in the form of conventional AAA. Operations had become stereotyped due to the limited road network in Route Package One, its basic north-south orientation, and the fact that the road network is restricted to the lower elevations between the mountains and the beach. The consistency and predictability of the armed reconnaissance missions afforded the enemy ample opportunity to stack their defenses. As a result the squadron struck fixed targets on randomly selected ingress and egress routes not previously used. After three days armed reconnaissance of the lines of communication were re-initiated, but are now interspersed with fixed target strikes in order to decrease the predictability of the attack.

(C) The squadron maintained a 37% aircraft availability rate and produced a 1.6 FSC average for the month of December. One aircraft was inducted into FAWPRA, Cubi Point due to fuel leaks and one aircraft was inducted into special rework at NAF, Atsugi, Japan, due to extensive electrical wiring damage. One aircraft was lost for 23 days

Enclosure (1)

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

due to over pressurization during ground refueling. This aircraft is still down awaiting receipt of an outer wing panel. There was a significant improvement in the average daily NORS items outstanding from 43 in November to 29 this month (approximately 33% improvement). The squadron flew an 86% sortie completion rate and a .59 sortie rate.

(C) Erection of a KRAF-TEX prefabricated building for the avionics complex was completed and is awaiting installation of electrical power prior to occupancy. This will add to the squadron's capability to maintain the complex attack and navigation systems and increase efficiency by centralizing all avionics efforts in one area.

(U) '533 Marines viewed with a great deal of enthusiasm the Bob Hope Christmas show when it visited RTAFB, Nam Phong on 23 December 1972. Captain J. E. SIMMONS, of '533, presented several momentos to Mr. Hope reflecting MAG-15's appreciation for his twenty-two years of entertaining Marines overseas.

(C) The squadron lost one aircraft and crew on 27 December. Aircraft BUNO 155666 was launched for an armed reconnaissance flight into Route Package One, North Vietnam. It never returned and is presumed lost due to hostile enemy action. The pilot, Captain R. J. CHIPMAN and Bombardier/Navigator, First Lieutenant R. W. FORRESTER are listed as missing in action.

(U) One career length extension was executed, for a career retention rate of 100% and an overall retention rate of 50%. Five personnel were enrolled in USAFI, bringing the total ~~enrolled~~ to 30, 11.7% of the squadron. Three Marines satisfactorily completed the high school GED, establishing 96.4% of the personnel in the squadron as high school graduates or GED certificate holders. Two '533 Marines received high school equivalency certificates from their respective State Department's of Education.

(U) Eight aircrew members were awarded Strike/Flight Awards and two Marines were awarded Meritorious Masts.

(U) At the close of this period, Marines of '533 continue to provide full support of operations in Southeast Asia. Morale and readiness continue to remain in a high state despite a fluctuating situation and all hands are putting forth maximum effort towards squadron activities.

PART III

SEQUENTIAL LISTING OF SIGNIFICANT EVENTS

1 December 1972

First FSC aircraft since deployment

Enclosure (1)

CONFIDENTIAL

CONFIDENTIAL

1 December 1972

VMA(AW)-533 Marine
awarded Meritorious Mast

9 December 1972

Aircraft Incident
involving overpressur-
azation during refueling

18 December 1972

VMA(AW)-533 Marine
awarded Meritorious Mast

23 December 1972

Bob Hope Christmas Show
visited RTAFB, Nam Phong

27 December 1972

Aircraft and crew lost
to hostile enemy fire

PART IV

SUPPORTING DOCUMENTS

- a. (U) A6A Systems Availability Study
- b. (U) VMA(AW)-533 Aircraft Incident Report 7-73I
- c. (U) Photograph of Bob Hope Ceremonies
- d. (U) Meritorious Mast certificates for Sergeant DECARUFEL and
Corporal WEITZEL
- e. (U) VMA(AW)-533 Aircraft Accident Report 3-73A
- f. (C) BDA for VMA(AW)-533 for the month of December

Enclosure (1)

CONFIDENTIAL

CONFIDENTIAL

UNCLASSIFIED**A6A Systems Availability Study**
UNCLASSIFIED

Copy No. of Copies

VMA(AR) 533

Marine Aircraft Group 15
FPO, San Francisco 96602
6 December 1972Subject

A6A System Availability at RTAFB Ham Phong for period
20 June - 20 November 1972, factors pertaining to

Introduction

The A6A is a sophisticated aircraft that, due to its complexity, has generated many misconceptions of its capabilities, employment, and support requirements.

Historically, many lessons learned concerning these factors have been re-learned as personnel have rotated and no means of passing the knowledge gained to the succeeding regimes has been instituted. The deployment and operations of VMA(AR) 533 at RTAFB Ham Phong have experienced the re-learning of some of these past lessons. The problem encountered is one of a lack of communication between the past and the present, at all echelons of command.

While the A6A is primarily designed as an all weather attack aircraft, it also possesses the capability of a visual delivery platform, or employment in conjunction with ground-controlled bombing radar (GCR). The large ordnance carrying capacity and long range of the aircraft are capabilities that are often exploited to justify its use in a "non-systems" role. This employment is often made for expediency, but not without adverse effects on the systems capability.

A-1**TAB A****UNCLASSIFIED**

Because of its complexity, the aircraft requires an unusual amount of skilled maintenance facilities, and intermediate level maintenance support.

The current aircraft readiness reporting system is too general and limited to adequately report the wide range of mission capabilities of the aircraft. This leads to misconception concerning the actual capabilities at any point in time.

All of those areas will be discussed in detail starting with the initial deployment until the present time. It is important to review in detail the evolutions of the VNA(A) 533 operations and support from the beginning to the present to understand why the squadron is here it is systems readiness-wise, and what can be achieved in the future.

1. Problem

To determine the requirements to improve the systems availability of the A6A aircraft assigned to VNA(A) 533 at RTAFB Nam Phong, Thailand.

2. Assumptions

No assumptions have been made with regard to this study.

3. Facts bearing on the problem.

a. That VNA(A) 533 arrived at the RTAFB on 20 June 1972 and commenced combat operations on 24 June 1972. (A/1)

b. That combat operations during June and July consisted entirely of day visual air support. (A/1)

c. That on 1 August the flagged day visual sorties were reduced by 50% to allow for increased systems maintenance. Night systems missions were commenced on 12 August. (A/1)

d. That a recap of the flight hours and sorties flown for the period under study are as follows: (A/1/2)

From 20 June	-	199/90
July	-	633/343
August	-	384/228

September	-	405/24
October	-	410/236
November	-	433/231

e. That a recap of the systems missions flown for the period under study are as follows: (A/1/2)

	Aug	Sept	Oct	Nov
Fragged	52	124	133	115
Completed	40/77%	91/73%	90/67%	77/67%
Grd. Aborts (airframe)	9/17%	26/4%	43/32%	32/28%
Air aborts	3	7	0	6
Diverts*	5	3	10	20

* Diverts due to higher authority, weather, or systems failure enroute to target area.

f. That systems availability is directly contingent upon airframe availability. (A/15)

g. That V A(AW) 533 recorded the following unscheduled NORI rates for the months of June through 28 November 1972 (A/3):

June - 10.9%	Sept - 37.8%
July - 18.6%	Oct - 31.5%
Aug - 23.0%	Nov - 22.3%

h. That V A(AW) 533 recorded the following scheduled NORI rates for the months of June through November 1972 (A/3):

June - 9.3%	Sept - 8.6%
July - 10.2%	Oct - 13.0%
Aug - 5.3%	Nov - 5.6%

i. That V A(AW) 533 recorded the following NORI rates for the months of June through 28 November 1972 (A/3):

June - 11.9%	Sept - 8.3%
July - 16.5%	Oct - 20.3%
Aug - 21.8%	Nov - 34.9%

j. That VMA(A) 533 recorded the following acts of cannibalization and associated man-hour requirements during the months of July through 28 November 1972 (A/4/5/6):

Month	July	Aug	Sept	Oct	Nov
No. items removed	143	197	245	153	64
Man-hours expended	353	328	756	301	97

k. That the average monthly MORS aircraft for the months of July through 28 November were (A/3):

July	Aug	Sept	Oct	Nov
1.67	2.12	1.21	2.32	3.7

l. That eight (8) squadron aircraft developed fuel leaks that required FAPRA repairs to correct. These repairs required an average of 13.2 days each to repair. (A/7).

m. That fuel leaks developing in the rear beam closure fitting of the wing fuel cell as a result of high "G" flight is a recognized fact (A/8).

n. That A6A BuNo 155619 sustained wire harness damage as a result of bleed air ducting failure which allowed 12th stage bleed air to enter the nose wheel well (A/9).

o. That A6A BuNo 155619 and BuNo 155706 cannot be configured FSC because of wire harness damage caused by 12th stage bleed air (A/10).

p. That VMA(A) 533 is below manning level in supervisory personnel in MOS 6234 and 6244 (A/11).

q. That the squadrons average on board aircraft and average operationally ready (OR) aircraft for the months of July through 28 November were (A/3):

Month	July	Aug	Sept	Oct	Nov
Avg OR	5.7	4.6	4.3	3.8	4.2
Avg on Bd	10.6	9.2	9.7	10.8	11.2

r. That statistics generated with the squadron's material control center provide the following recap of the A6 supply support (A/13):

	July/Aug	Sept	Oct	Nov
Avg daily MORS-G items	33	42	43	43
Avg monthly fill rate	19%	33%	26%	27%

s. That the group supply officer estimates that approximately 25% of the '533 NOR-S-G requisitions are invalid.

That is to say that 25% of the items ordered NOR-S-G should have been ordered under some lesser priority, i.e. NOR-S-N, AKB, etc. (A/14)

t. That the definition of a NOR-S item is: "The item is required for an aircraft in a readiness reportable status and the item causes the aircraft to be incapable of safe flight or unable to perform a minimum of one of the primary missions of the unit to which assigned." (A/12)

u. That the definition of a NFE item is: "The item is required for an aircraft in a readiness reportable status and is safely flyable and is capable of performing one or more, but not all of the primary missions of the unit to which assigned." (A/12)

v. The supply demands, all priorities included, have been increasing drastically during the period of time '533 has been deployed at Nam Phong: (A/13)

Total Supply Demands	July	Aug	Sept	Oct	Nov
	488	372	402	523	522

w. That research has indicated that errors in ordering are being made by the squadron, primarily in the areas of priority, part number, stock number, or reference. By the same token, research has indicated errors in stock record keeping by group supply which results in requisitions being passed when the item is in fact in the warehouse. (A/14)

x. That early studies conducted by group supply indicated that the response time on NOR-S items for the aircraft group as a whole was five (5) days from Subic Bay and twenty (20) days from CONUS. The most recent studies show the following response times: On station: 2.5 hours; Subic Bay: 6.4 days; CONUS: 21 days. (A/14)

y. That "Project Leapfrog" was originated in September 1972 to provide special supply assists to Navy and Marine A6 squadrons operating in WestPac. (A/14)

z. That a survey is being conducted in group supply on the time frame involved in expediting requisitioning. The goal is 100% within one (1) hour. (A/14)

aa. That aviation parts, components and materials are now being identified and stored by weapons systems to facilitate inventory management and to effect redeployment should it become necessary. (A/14)

bb. That all NIS/NC NORS requisitions are screened against the warehouse locator deck, including substitutes. (A/14)

cc. That a trouble item review sheet is prepared for all NORS/NFE which are NIS/NC. (A/14)

dd. That an excess review is currently nearing completion that will cut stock balance cards to less than 30,000 thereby improving management control. This would be a reduction of approximately 50%. (A/14)

ee. SUADPS is scheduled for implementation during February 1973. This will provide a vehicle by which a vast variety of management tools may be utilized for more efficient, effective supply support. The system will also include automatic follow-up and automatic adjustments of stock levels based on hits. (A/14)

ff. That SACE vans began arriving at Nam Phong 21 June and the SACE complex began limited operations approximately 5 July. (A/16)

gg. That initially the SACE complex operated on Marine Corps tactical generators which, by SACE power requirement standards, were considered inadequate due to their lack of reliability and their inability to maintain a constant frequency. The complex went on temporary MUSE power on 21 July. (A/16)

hh. That on approximately 14 Oct 1972 the entire avionics complex went on a central power distribution system powered by MUSE generators. (A/17)

ii. That the track radar boresight bench, which is one of the many test benches making up the SACE, was inoperative prior to the SACE leaving MAG-12 and it remained inoperative until approximately 1 November 1972. (A/18)

jj. That the SACE update and test equipment, rehab team completed a complete repair and rehab of the MAG-15 SACE on 27 October 1972. (A/16)

kk. H&MS-15 production control records indicate the following average daily "holes" by month. As used here "holes" are defined as systems black boxes that are missing from the aircraft and located at the IMA for repair: (A/19)

July	Aug	Sept	Oct	Nov
27	38	39	30	16

11. That H&MS-15 production control records provide the following recap of WC 650, SACE, Module and Component repair:
(A/19)

	Sept	Oct	Nov
Inducted	405	506	528
RFI	384	555	488
BCM	39	32	30
Avg AWM	89	82	23
Avg AWP	145	137	121

mm. That the squadron dedicated a number of aircraft as "systems aircraft", and these received the majority of the systems maintenance effort. The other aircraft were used to meet day visual sortie requirements. (A/20)

nn. That the systems components (black boxes) were removed from some of the day "iron bombers" and used as a "sub-pool" within the squadron fire control maintenance area. (A/20)

oo. That the current aircraft availability/readiness reporting to higher authority includes the following categories of the aircraft status: FSC, OR, RMC(M), RMC(S), NORM, NORS. (A/21)

4. Discussion

a. Operations

(1) The combat missions flown during the month of June and July consisted entirely of day visual air support. During this period there were no systems missions fragged or flown. During July the squadron flew 633 hours, 343 sorties,

a 1.04 sortie rate, and 207% aircraft utilization. In order to accomplish this level of operations virtually 100% of the maintenance effort was applied to keeping airframes flyable and those components directly related to visual ordnance delivery operating. The all weather attack system was almost completely ignored, not through choice, but due to lack of available systems maintenance time. In addition, the capability of the SACE at this time was such that adequate IMA support was questionable even if the choice had been made to maintain the system. Such a situation usually leads to a slow deterioration of the systems in general with multiple component failure and multiple failures per component. The results are a long, difficult road back to adequate systems.

(2) The first of August the requirement to commence night systems operations became a reality. In order to provide "up" airframes to fire control to perform systems maintenance, the day visual frag was reduced by 50%. This is reflected in the drastic reduction of flight hours and sorties for the month of August. Night systems sorties commenced 12 August.

(3) The number of sorties fragged at night increased since they were commenced in August. The decrease of fragged missions in November is due to the runway being closed for a period during the first week, or so in November from 2400 to 0600 limiting night operations. The number of missions

lost to airframe aborts increased steadily through October with a slight improvement, or leveling off in November. This same trend indicated in the maintenance data which shows a decrease in the average daily "OR" airframes through October with an improvement in November. This subject of airframe availability is addressed more fully in later discussion.

(4) Generally it appears that the all weather attack systems deteriorated during the initial forty (40) day employment of the A6 at Nam Phong to the degree that it has been a time consuming process getting them back to a satisfactory level. This period was probably lengthened by the fact that a portion of the day visual frag was retained so that 100% attention was not given to systems missions. The systems missions lost were not due to systems failures as much as airframes difficulties.

b. Maintenance:

(1) Before an aircraft can be placed in the nose docks and maintenance performed on the weapons systems, it must, for the most part, be an "up" airframe. The usual exceptions to this is maintenance on the Com/Nav, RHAW, DECM equipment, and other such minor discrepancies. Systems maintenance requires an uninterrupted power supply and total freedom of action in the cockpit and radome area. It goes without saying that an airframe that is not operationally ready and cannot safely fly cannot perform any mission, let alone a systems missions. For these reasons any study

concerning systems availability must naturally address airframes availability.

(2) Numerous statistics are available in reference to aircraft maintenance and availability. Some of the statistics and related factors affecting airframe maintenance are as follows:

(a) NORM-U, or unscheduled maintenance, has increased since June to a peak in September, and is now on the way back down; the trend is as indicated by the percentage depicted below.

June - 10.9%	Sept - 37.8%
July - 18.6%	Oct - 31.5%
Aug - 23.0%	Nov 28 - 22.3%

The high months of September and October reflect the high unscheduled time in replacing the forward fuel cell in BuNo 155689. The downward trend is encouraging and reflects a reduction in cannibalization efforts. Local attempts to repair fuel leaks in the rear beam closure fitting of the wing fuel cell contributed greatly to the NORM-U in July and August.

(b) NORM-S, scheduled maintenance, has fluctuated considerably and is presently also on the down cycle - the trend as reported is:

June - 9.3%	Sept - 8.6%
July - 10.2%	Oct - 13.0%
Aug - 5.3%	Nov 28 - 5.6%

The high reflected in October was caused by 3 aircraft in check for extended periods as a result of high cannibalization of these aircraft to keep sufficient aircraft operationally ready to meet the daily frag. The low so far in November is created by an outstanding job by check crew which completed a check in eight (8) days, and in a change of cannibalization policy which stringently adheres to Wing SOP, preventing the unnecessary cannibalization of this aircraft. A changed cannibalization policy on 1 Oct started the downward trend and the outlook is for a leveling out of the NORM-S.

(c) NORS, or not operationally ready due to supply. This rate is increasing at this time, and, due to squadron's current cannibalization procedure, will most likely increase even more. The trend is indicated by the following:

June - 11.9	Sept - 8.3
July - 16.5	Oct - 20.3
Aug - 21.8	Nov - 34.9

Two significant factors contributed to the trends shown in the monthly rates, the low of 8.3% during September was caused by charging all the NORS against one or two aircraft, and cannibalizing those aircraft for parts to place other aircraft in an operationally ready status. The abrupt increase during October and into November reflect the change in cannibalization policy wherein no more than five (5) acts of cannibalization are performed against any one aircraft, and in turn, the squadron's outstanding NORS are spread out

over more aircraft. The trend is not considered indicative of a degradation of supply support, but of a statistical trick resulting from the aircraft accounting procedures.

(d) Aircraft periodic checks have also been responsible for abnormally high scheduled maintenance rates. Ten (10) checks have been accomplished since June, taking an average of 25.1 days to complete. Seven (7) to ten (10) days is considered an acceptable time to complete a check under current conditions. The longer periods required in check cycle completion resulted from cannibalization. The last aircraft cycled through check took eight (8) days, was not cannibalized, and accounted for the reduction in NORM-S during November. An aircraft undergoing calendar check at present is proceeding very well and should improve on the eight (8) day accomplishment.

(e) Cannibalization, as previously mentioned, has played a significant role in the squadron maintenance program at Nam Phong. The statistics are as follows:

	Jul	Aug	Sep	Oct	Nov 28
No. Items Removed:	143	197	245	153	64
Manhours required:	353	328	756	301	97

As is noted, the rate increased abruptly to September when it reached a high of 245 items, since that time the change in local cannibalization policy has caused an abrupt drop to a low of 64 actions to 28 November. While the cannibalization rate has dropped abruptly the NORS aircraft

have increased proportionately as indicated by the figures below:

Month:	July	Aug	Sept	Oct	Nov
Avg. Aoft NORS:	1.67	2.12	1.21	2.32	3.7

While the rate is increasing, it is not considered significant as it reflects the spreading of NORS items over several aircraft rather than over one or two as was previously the case. This procedure is expected to enable the squadron to re-build all assigned aircraft to an operationally ready status and prevent harboring hangar queens. The reduction in cannibalization is also expected to reduce total parts requirements as fewer items should be damaged during the installation and removal phases of maintenance.

(f) Aircraft fuel leaks have also had an adverse effect on airframe availability while at Nam Phong. The squadron has had eight (8) aircraft experience fuel leaks that required repair at FAWPRA, one of them twice (BuNo 155707). Experience has found that extended periods of high "G" flight as is encountered in the visual ordnance delivery mission, creates fuel leaks in the A6A aircraft. Leaks in the rear closure fittings were encountered in Vietnam during 1967 and 1968 and have been acknowledged as a continuing fleet wide problem in COMNAVAIRPAC message 030333Z Nov 1972 (U). As a result of the fuel leaks, an average of 13.2 days per aircraft were lost to squadron operations while the aircraft were repaired at Cubi Point, P. I.

(g) Wiring damage to two aircraft assigned to VMA(AW) 533 have prevented them from accepting aircraft systems components. BuNo 155706 cannot accept a computer because of wiring harness damage caused when 12th stage bleed air entered the ASQ-61 computer and melted and shorted the associated wiring. BuNo 155619 experienced 12th stage bleed air damage to wire bundles in the nose wheel well when ducting to the "windshield air" assembly failed. The hot 12th stage bleed air melted and shorted a major wire bundle carrying leads to the ASQ-61 computer, APQ-92 search radar, APQ-112 track radar and ASN-31 inertial navigation system. As a result, these components cannot be installed and operated in the respective aircraft at the present time, a request for a Planner and Estimator Team is being submitted to determine the extent of repairs required to render these aircraft FSC. These aircraft have been devoted to the day visual delivery mission. Until repairs are effected on these aircraft they cannot attain A10 status.

(h) Personnel strengths are not considered a major factor in attaining airframes and systems availability. The squadron has on board strengths equal to or exceeding the manning level. The personnel factors which adversely affect these goals are more directed toward experience levels, and supervisory personnel.

Two areas considered critically short of supervisors are the fields that are directly responsible for building aircraft systems. They are summarized as follows:

MOS 6234 Aircraft Radar/Attack Systems Technician A6

Rate 2 Gunnery Sergeants, have 0 assigned.

Rate 2 Staff Sergeants, have 2 assigned, one departing mid-December, one available who is IMA (vs. OMA) experienced. This situation was the subject of message traffic between MAG-15 and 1stMAW G-1 as early as July.

MOS 6244 Electrician

Rate 1 Gunnery Sergeant, have 0 assigned.

Rate 2 Staff Sergeant, have 0 assigned.

(i) The shortage of experience level also is felt in the hydraulic shop. While the squadron rates one (1) gunnery sergeant and one (1) staff sergeant, the on-hand strength is 2 staff sergeants. While on the surface this appears to be acceptable, neither of the two available SNCQ's are A6A trained. One is F4 trained, the other has no practical hydraulic experience at all.

(j) The overall result of these personnel considerations is insufficient supervision of the corresponding section in accomplishing efficient, effective maintenance of the aircraft and weapon system. As a result many ineffective man-hours are spent in troubleshooting and maintenance actions which could be reduced considerably if proper supervision and expertise were available.

(k) A point was brought out briefly in a previous paragraph addressing on-hand strength of MOS 6234 which is important enough to expand here. Even though two technicians carry the same MOS, 6234, the fact that they are either IMA trained or OMA trained is important. Personnel managers tend to assign them without consideration of their specialty within the occupational field. This results in an ineffective technician until he is retrained from one maintenance level to the other. '533 has had three IMA trained personnel assigned, one a staff sergeant who was counted on to fill a supervisory billet.

(3) In correlating the above factors, it would appear that the reduction of cannibalization acts has improved considerably the NORM rate in both the scheduled, and unscheduled categories. The inverse effect has been noted in the NORS rate, as the cannibalization acts decreased, the NORS rate increased. The relationship here is not necessarily one of reduced supply support, but more of assigning NORS status to more of the squadron aircraft as the provisions of the Wing Maintenance SOP concerning cannibalization was applied. The inverse relationship between NORS and the NORM is not considered significant in itself, but may have other implications that are not indicated here.

(4) Another relationship exists between the NORM rates when compared to the average number of available up aircraft per month. Both NORM catagories peaked out during September and October which were also the lowest record of aircraft availability. It is plotted below:

	Jul	Aug	Sep	Oct	Nov
Avg on Bd Acft:	10.6	9.2	9.7	10.8	11.2
Avg OR Acft:	5.7	4.6	4.3	3.8	4.2
% of OR Acft:	54%	50%	44%	35%	38%

It is also noted that NORM improved considerable during November, and the percentage of aircraft OR also showed an increase.

(5) The high cannibalization month of September showed little or no effect on the downward trend that had been established in the preceeding months, and carried on into October when cannibalization was curtailed.

(6) It would follow then, that one could assume the high NORM rates, both scheduled and unscheduled, were caused in part by a high rate of cannibalization. It would also be sound to assume that little benefit was derived from the cannibalization acts, and that in fact cannibalization in all probability resulted only in increased manhour requirements and lengthened the time Hangar Queens were in a NORS status. Little beneficial effect of the program can be seen in improved aircraft availability , and possible adverse effects could be surmised. The decision to discontinue cannibalization during October in retrospect appears to be a sound decision.

The beneficial effects of shortening check cycle time in all likelihood compensates for the immediate effect of attaining flyable status of an aircraft through cannibalization.

(7) Other problem areas are problems that must be addressed directly. The two aircraft with wiring damage must be repaired before they can attain A10 status. This action has been initiated. Supervisory personnel are presently not available in the MOS's that are most concerned with FSC aircraft, or do not have the expertise desired. The attainment of FSC aircraft in quantity can be attained with the experience level the squadron presently has, but with somewhat less efficiency and rapidity. There is no substitute for experience when working with the complexities of the A6A.

c. Supply Support.

(1) Gathering meaningful, workable statistics with which to measure supply support has proven to be difficult for the operator. The Material Control Center (MCC) of '533 keeps a daily record of the total parts requisitions submitted ("hits" on the system), the number of requisitions that can be filled from stock on hand at the MAG-15 warehouse ("fills"), and the total numbers of NORS-G requisitions outstanding each day. From this information the squadron computes a daily "fill rate". By keeping a running total the average monthly fill rate is available on any day. The same is true for the number of NORS-G items outstanding on any day during the month the

monthly average is available. This procedure was started on 1 September. The statistics prior to that were developed in conjunction with the Group Supply Officer during July and August. The statistics shown in paragraph 3 were developed in this manner.

(2) The Group Supply Officer estimated as a result of a one-time sampling that approximately 25% of the '533 NORS-G requisitions were invalid and therefore inflating the NORS rate. They should have been ordered under a lower priority. The definitions of various priorities of supply requisitions contained in the Wing SOP for Supply are specific, however, there are occasions and situations where they can be misinterpreted. Of the requisitions considered to be invalid a portion of them were ordered incorrectly at the squadron level, either through inattention, or with the false assumption that ordering NORS would get the required item quicker. On the other hand, a portion of the items are items which keep the aircraft from performing its assigned mission, even though it is safely flyable. The squadron is committed to combat operations. If the aircraft cannot perform its mission it does not fly, and for all intent and purpose is grounded. The supply side of the house argues these items should be ordered NFE because the aircraft is safely flyable without the specific item, and when ordered NORS incorrectly, inflates the NORS rate. The squadron persists in ordering these items NORS because the aircraft cannot perform its mission and,

if that is the case at this time and place, it does not fly.

(3) The total number of supply demands by the squadron appears to be unusually high. Not only do they appear to be high, they have steadily climbed during the month of September, October and the first 20 days of November after a sizeable dip in August. An attempt to analyze this increase was made seeking counsel from squadron and group maintenance experts, and group supply experts. There was no success in determining exactly the cause. The trend follows the flight hour production as far as upward and downward movement is concerned, however, the increases and decreases of supply demands is way out of proportion to the increases and decreases in flight hours. The demands increase over time which would seem normal considering the tempo of operations and the continual over-utilization of the aircraft. Simply stated, more parts are wearing out. The decrease between July and August seems to disspell this theory. If one considers the sizeable decrease in flight hours between July and August, approximately 40%, it might be assumed that the decrease in flight hours was the stronger influencing factor of the two during this period, July to August.

(4) It is interesting to note that the trend in total supply demands is the same for the two F4 squadrons assigned to MAG-15. That is increasing with increased flight hours and increasing over time. The number of items do not compare, however, the A6 demands are higher. Another possibility for high demands could be poor maintenance procedures at

the squadron level, especially in the troubleshooting area. That is to say the maintenance personnel simply start changing parts until a discrepancy is fixed without using proper techniques to track down the exact component and replacing it. If this were the sole factor then it would seem that the demands would be rather constant and not increasing drastically. Such an increase would indicate a continual worsening of maintenance practices over time which is doubtful. Without being able to lock on to any one cause for this trend and since there are no comparative A6 statistics to indicate whether these demands are unusual or not, it can only be concluded that all the factors discussed above influence the number of total demands. Which one is the more serious culprit is impossible to determine.

(5) The errors being made in the squadron in ordering and the stock record errors being made at the group level are not unusual. The skill level of personnel at both echelons, the facilities and lack of automated inventory means, and the growing pains from a rapid deployment to an austere base to a settled operation are all factors that contribute to these administrative errors. As long as it is recognized that they will occur, and as long as they do not grow out of proportion, they should be accepted as a problem that will exist until the supply operation smooths out over time.

(6) Supply response time from external supply points does not seem to be adequate, however, there are no standards by which to evaluate the times. There are several factors that could effect response time, the primary one being the availability and regularity of transportation. Also, the figures provided are responses for MAG-15 as a whole, the A6 response may be different.

(7) Project Leapfrog is certain to have some effect on the supply support of the A6 aircraft in WestPac. The exact effect cannot be broken out and a quantitative measure of its success is not available. It is addressed here simply as a management action by higher headquarters that contributed to some degree to improved supply support.

(8) Numerous management actions are being taken locally by MAG-15 supply (para 3aa. thru ff.). Each one of these is an important step forward and the combination of all of them should greatly enhance the effectiveness and response of the local supply facility.

(9) To analyze or summarize the statistics presented concerning supply support and tie them directly to the problems of improving A6 systems availability is a difficult task. Supply has a direct and an indirect effect on systems availability, the latter being the most important. The lack of parts to repair airframes leads to a low airframe availability and with the airframe in a non-operational status the system does not fly. Looking at the average daily NORS

items per month, a major increase can be seen through September, but then it levels off for October and November.

The fact that it levels off is encouraging and gives the opinion that the supply system is staying even. This is not true, however, when one considers the increasing demands over the past three months. So in order to keep the average daily NORS outstanding at a stable level, the supply of spare parts has to be improving, or increasing. The fill rate has been decreasing the past two months. Again this is probably the result of increasing demands.

(10) Supply also has an effect on the maintenance of the systems themselves. Looking at the average number of modules and components in the IMA awaiting parts over the past three months, one will see a steady decline there. This also indicates the supply support is improving.

(11) There are two areas that seem to be the keys. First, why are there a large number of outstanding NORS items? Obviously because of the increasing demand for spare parts. The possible reasons for this were discussed earlier. Second, even though improving, the availability of A6 spare parts in the system seems to be below that required.

d. IMA Support (SACE)

(1) Little can be said concerning the deployment of a SACE complex that has not been said before and written into Lessons Learned several years ago. The SACE complex is

deployable and can be operated at a deployment base in a reasonable period of time. It takes planning and coordination, and a reliance on people experienced in SACE operations.

Most importantly it requires adequate power, not just volume of power, but reliable and frequency controlled. There are rather delicate test benches in the SACE and the aircraft components are susceptible to power surge and frequency changes.

Certain check out procedures take hours of sequential, uninterrupted steps. A power failure negates the whole procedure and it must be started over again. What results from tactical power is that test benches are burned up, or damaged from power surges, finely balance bearings on a computer fill drum are ruined due to improper power frequency, and test procedures delayed by power failures. These things all happened at MAG-15, and more. These lessons were learned at Nam Phong just like they were previously learned at Danang and Chu Lai years earlier.

(2) The capability of the SACE to provide completely RFI track radar was not available until approximately 1 November because the track radar boresight bench was inoperative awaiting test equipment. The track radar is one of the sub-systems required for an A10 full systems A6, yet the capability to repair track radar was not available for the first four months of this deployment. When one takes the literal definition of FSC and strictly adheres to those requirements, this paragraph could stand alone as the reason

why no A10 aircraft have been reported up to 1 November. There were other test benches out of service for various periods of time, primarily due to lack of spare parts to repair them. During September and October a rehab team from CONUS was on board to update and repair the test benches. The effect of their program is reflected in the statistics which show the reduction of the number of components and modules awaiting maintenance during November.

(3) In summarizing the statistics shown one can see reflected the squadron flight operations and the steady improvement in the IMA capability. Looking at the statistics concerning "holes" in the aircraft one sees a quantum jump in August and September over July. It was in August that the squadron began night systems operations and began putting serious demands on the SACE. During October and November the initial surge of building systems had leveled out, plus the SACE rehab was completed. These factors are reflected by a drastic reduction in "holes".

(4) The same sequence of events can be noted in the statistics concerning the operations of the SACE as far as inputs and outputs were concerned. Additionally, reflected here is the decrease in the average number of components and modules awaiting parts, or an improving supply support.

(5) An operational and maintenance procedure, that was instituted to meet the requirement for both day visual bombing sorties and night systems sorties, was to dedicate

certain aircraft as systems aircraft and concentrate the systems maintenance effort on these aircraft. This was determined to be the most efficient utilization of the maintenance assets and the maintenance time available. There were two undesirable features to this practice. One was the fact that if a dedicated systems aircraft went "hard down", NORS or into calendar check, then the night systems missions suffered since there was not an immediate replacement and it required turning aircraft around for a second night mission. Second, the systems on the day "iron bomber" usually deteriorated to the point where it took many manhours to bring them up to an adequate, mission capable level. In spite of these two major disadvantages it is still felt at the squadron level that this is the route to take when an A6 squadron is committed to both a day visual mission and a night systems mission.

(6) Another systems maintenance technique that was employed by the squadron was to keep on hand at the squadron Fire Control maintenance area a "sub-pool" of rotatable spares, that is systems black boxes. These boxes were from aircraft that were away in rework, unable to take a system due to wiring problems or firmly dedicated day iron bombers. The reason for this procedure was response time. Systems trouble shooting entails a great deal of box changing in search for the inoperative box or the inoperative combination of boxes. The time involved in using the correct supply

procedures was unacceptable. It entailed carrying an inoperative box clear across the flight line to the squadron Material Control Center, preparing the paper work, co-ordinating with the IMA Production Control and the rotatable pool to see if the replacement was available. Then getting the new box from the pool and carrying back out to the systems maintenance area. All this was accomplished without adequate transportation or communications. In the interest of getting the systems maintenance performed in a timely manner and meeting the commitment, the pool of black boxes in the squadron was a necessity. It is not an official practice, but it is certainly not an uncommon one and it is not limited to the A6 community. It will develop wherever and whenever the physical layout or lack of supply response prevents the timely arrival of spares.

(7) At the present time this pool at the squadron level has been removed. This was due to a change in procedures which allow the paperwork to follow the actual exchange of boxes, and by the acquisition of adequate radio communications for the fire control section. The practice of a pool in the squadron was not eliminated because the squadron was "caught" or felt it was wrong, but because the system for getting replacement boxes was changed and provided and adequate response time.

e. Communications:

(1) Communication facilities within the OMA have been lacking, and have seriously degraded overall supply response. The squadron fire control section is established across the parking ramp from the squadron hangar. Communications between the fire control section and the squadron maintenance and material control sections has been accomplished by means of a squadron installed field phone which was subject to numerous failures, and by runner. This condition existed until approximately the first week in November, when radios were made available to facilitate rapid response to material demands.

(2) Communications between the squadron maintenance and material control sections with the IMA, SACE, pool and recently production control, has been maintained using telephones. This service was available soon after arrival at RTAFB, Nam Phong and has not posed an appreciable problem.

(3) Desired communications to further facilitate expeditious handling of supply requests would consist of a dependable hot line system between maintenance control and the fire control complex, a telephone drop at the fire control complex to tie in with the base switch board and a continuation of the use of the radios for OMA coordination.

(4) While the radios are greatly facilitating the coordination effort of the squadron, and no major problems are apparent at this time, inadequate communications has been a major factor in the past with respect to systems

maintenance. The backing up of the radios with land lines will further increase the coordination and effectiveness of the systems effort.

f. A6 Readiness Reporting:

(1) When addressing A6 systems availability and readiness; one is addressing a very broad, complex subject. Unlike many other types of aircraft, it is not a black/white, either/or situation. The capabilities of the system are many, the levels of sub-systems that can still adequately perform certain missions are many. Yet, with all these levels of mission capable readiness the readiness reporting procedures limits the reporting to FSC, OR, RMC, NORM and NORS. The planner and operators have no trouble understanding and employing an A6 that is reported FSC. On the other hand they may not understand or be able to correctly employ an A6 reported as OR because its range of capabilities within that readiness status is great. Due to this lack of understanding there are sometimes unnecessary demands placed for FSC aircraft. Again, it must be emphasized that the A6 is unique in that the systems are unlike any other aircraft in complexity and pure volume of components. The problem seems to be that the squadron has a system capability that will satisfy the assigned mission, however the higher echelons in the operational chain of command have no means of determining their capabilities. Therefore the higher echelon presses for the only sure readiness measure they know, and

and that is FSC. Achieving FSC when one considers all the factors that are involved - airframe availability; adequate numbers of trained personnel; adequate supply support; proper facilities, including environmentally controlled storage areas, power, shelter, etc.; adequate IMA support with all their requirements for power, personnel, supply etc.; reasonable sortie rates that allow time for both airframe and systems maintenance; and, again, the volume and complexity of sub-systems - is a monumental task, especially in a deployment to an austere, expeditionary site. Do not misconstrue this discussion to be one in opposition to FSC aircraft. On the contrary that is the ultimate goal to which all efforts should be directed. However, there are intermediate goals and capabilities which are also important and should be recognized and accounted for. The solution to this problem is an internal readiness reporting system that provides categories for the various mission-capable levels of the A6. From these categories, planners and operators could tell exactly the capabilities of the A6 from zero systems capability to full systems capability. To highlight this discussion with an example, on 29 November numerous fraged combat sorties were cancelled because FSC aircraft were not available to fly them, while the aircraft capable of successfully completing those missions were available and sitting on the flight line, ready and loaded.

Granted, this is a practical viewpoint and might not stand up in a theoretical discussion. It can only be pointed out that in theory the factor required to obtain FSC aircraft which were enumerated above, are assumed to be available, not so in practice.

5. Conclusions

a. That the employment of the A-6A in high tempo day operations during the early months of the deployment to Nam Phong demanded 100% of the maintenance effort to ensure airframes availability, aggravated inherent, known airframes weaknesses causing excessive fuel leaks requiring FAWPRA level repair, and created a maintenance direction that degraded systems capabilities to near zero.

b. That since 12 August 1972 the squadron has been involved in a dual mission, that of visual ordnance delivery and of night systems interdiction missions, and that neither mission was given priority over the other. As a result the maintenance effort has been primarily directed toward meeting the "frag" rather than attaining FSC, and prompted the decision to keep the two aircraft with wiring damage in an "OR" status to meet the visual commitment rather than to induct them into FAWPRA for repairs.

c. That the squadron procedures concerning cannibalization obtained questionable results. In retrospect it may be

surmised that excessive cannibalization created hangar queues, lengthened check cycles, showed misleading aircraft NORS rates, increased manhour requirements in the name of attaining immediate aircraft availability.

d. That initially upon arriving at Nam Phong, the IMA SACE was seriously degraded by inadequate power supply, inoperative benches, and a shortage of numerous bits and pieces to repair both the A-6A components, and the benches. Since mid July when it went on stable power, the SACE has progressively improved until on 28 October upon completion of the periodic update, it was capable of providing adequate support to attain the FSC goal. It is now capable of supporting the squadron's systems effort.

e. That supply assistance was initially inadequate to support the squadron's requirements due to the lack of commonality with the F-4 aircraft, the inadequacy of the pickup brought from MAG-12, and the response time required to process A-6A designated items. While errors in record keeping and control are to be found in MAG-15 supply, it is not considered disproportionate to any other group or supply agency. Requisitioning procedure discrepancies on the squadron level are acknowledged and play a corresponding role in the overall supply effort. Supply response is improving as is evidenced by the leveling off of the average daily NORS outstanding while the total demands are increasing. This is encouraging, especially in view of the overall shortage of A6 parts in WestPac as is evidenced by

the implementation of Project Leapfrog. Even though the supply situation is improving the numbers of NORS items outstanding is still high. Overall airframe availability will not improve because of this situation.

f. That experienced supervisory personnel in the squadron fire control and electric sections are critically lacking, and are seriously affecting the FSC effort. Experience gaps in associated airframes specialities are also adversely affecting airframes availability.

g. That the A-6A has a wide range of degraded systems capabilities, that, while not Full Systems Capable (FSC), are capable of performing a number of assigned missions. The present reporting system does not include these categories to adequately report these capabilities and therefore do not provide planners with an adequate picture of aircraft readiness.

h. That VMA(AW) 533 presently has a systems capability that can effectively pursue the night interdiction mission assigned, and that the systems capabilities are progressively improving in quality. The limiting factor in meeting the night frag is airframes availability and dependability.

i. That closer coordination is required between the squadron, IMA and Group Supply. There was contact between these three interested parties in the past, however, it possibly was not adequately pursued.

6. Actions Recommended

a. In view of improving supply support, improved capability of the SACE, and the improving A6 systems availability and reliability, it is recommended that VMA(AW) 533 and MAG-15 continue with present programs and procedures designed to enhance the FSC of the A6 aircraft. This includes increased liaison among the primary parties: supply, IMA and the squadron, and continuing attention to squadron maintenance practices in order to find possible areas for improved practices.

b. That higher authority continually review the supply status of A6 spares providing assistance as appropriate, or when requested.

c. That an aircraft status reporting system be developed within the First Marine Aircraft Wing, and possibly FMFPac, to reflect the wide range of A6 mission-capable readiness.

J. C. BROWN
Lieutenant Colonel
Commanding

Recommendations	Approved	Disapproved
6.a.	<hr/>	<hr/>
6.b.	<hr/>	<hr/>
6.c.	<hr/>	<hr/>

A-35
UNCLASSIFIED

TAB A

ANNEX A

Bibliography

1. VMA(AW) 533 Command Chronology
2. VMA(AW) 533 Operations Corrected flight schedule and debrief sheets
3. VMA(AW) 533 Monthly Maintenance Summary
4. Squadron Maintenance Data Report (MDR)
5. Squadron visual index display cards (VIDS)
6. Squadron maintenance action forms (MAFS)
7. Squadron OPNAV Record "A" Cards
8. COMNAVAIRPAC msg 030333Z Nov 72
9. VMA(AW) 533 msg 040734Z Oct 71
10. Technicians report of status of Buno's 155619 and 155706
11. CO MAG-15 ltr RLL:eer Ser 5314 dtd 25 Oct 72
12. WgO P4400.16 (Wing SOP for Supply)
13. VMA(AW) 533 Daily Supply Status Report/material control register
14. MAG-15 Supply Officer's Report and Evaluation
15. OPNAV Inst 5442.2C and 05442.4 (definition of FSC)
16. H&MS-15 Command Chronology
17. MAG-15 Command Chronology
18. MAG-15 Test Bench out of service (TBOS) report
19. H&MS-15 Production Control "Holes" Report
20. VMA(AW) 533 Maintenance Control Log
21. MAG-15 Daily Aircraft Availability Report

DECLASSIFIED

NAVAL RECOGNITION
OP-141 FORM 10-68 (REV. 3-61) 5/N 0107 000DRAFTED BY
H. L. TRAUTTER, 1/LTPHOTOCOPY
138

11 DECEMBER 1972

TOP/TOE

ROUTED BY

CIRCLED BY

NAVAL AIR GROUP (GCT)

PRECEDENCE

FLASH

URGENT

URGENT

URGENT

ACTION

INFO

XX

XX

6. HOME

1. AIRCRAFT WAS UNDERGOING POST FLIGHT INSPECTION WHILE BEING FUELLED. PLANE CAPTAIN NOTICED FUEL LEAKING FROM BULGE ON LOWER RIB OF LEFT OUTER WING PANEL. DAMAGE EXTENDS FROM RIB ATTACHMENT 128W10534-37 DETAIL HOTEL TO REB ASSEMBLY 128W10534-5 DETAIL MIKE (REF (C)); AND FROM BEAM INSTALLATION 128WH10032-1, STEM 202 TO REAR INSTALLATION 128WH10036-1, STEM 200 (REF (C)). RAILING HEIGHT OF BULGE THREE EIGHTHS OF AN INCH.

2. PANEL ASSEMBLY COMPLETE WING OUTER, SPARE LH/SER NO A 1-239/
WTC 11212/NC 26512/PART NO 128GSR3-5/FSN 1560-089-4696

1. RA

2. RA

C. 1494.1/504.7/NARP NORVA

9. INDEX

10. RA

11. OVER PRESSURIZATION DURING GROUND REFUELING. WING VENT VALVE FROZEN INOPERATIVE. IMPROPER REFUELING PROCEDURES. HIGH PRESSURE WARNING LIGHTS NOT MONITORED. REFUELING PROCEDURES NOT BEEN REVIEWED.

12. RA

13. RA

14. RA

15. VMA(AW) 512 THREE THREE

16. TRAUTTER, H. L., 1/LT, VMA(AW)-533, AVIATION SAFETY OFFICER, 138

17. INDEX

B-2

TAB B

DATE/TIME GROUP (GCT)

UNCLASSIFIED

DECLASSIFIED

DECLASSIFIED

Photograph of Bob Hope Ceremonies

TAA 1

DECLASSIFIED

DECLASSIFIED

DO NOT
IMAGE

DECLASSIFIED

Meritorious Mast Certificates for Sergeant DECARUFEL and Corporal WEITZEL

MARINE ALL WEATHER ATTACK SQUADRON 533

Marine All Weather Attack Group 15

1st Marine Aircraft Wing

Marine Corps Air Station

Fleet Marine Force

Fleet Marine Force

Squadron 1650

1650ops

1 December 1972

SQUADRON BULLETIN 1650From: Commanding Officer
To: Distribution List

Subj: Meritorious Mast

Ref: (a) MCO 1650.0
(b) MCO P1070.8, IRAN, per LBN2.1e

1. Purpose. To promulgate information concerning a Meritorious Mast held for Sergeant James A. DeCarufel 461 84 76 26/6062 USMC

2. Promulgation. Meritorious Mast was held this date by the Commanding Officer in accordance with the provision of reference (a). The following remarks were made:

" Since joining Marine All Weather Attack Squadron 533 on 8 September 1972 you have consistently demonstrated technical competence to the highest level and devotion to duty that is an inspiration to everyone with whom you work. Your complete professionalism and outstanding pride in your work have set you apart on many occasions.

It has been noted with the greatest of pride that you have always been willing to work beyond what would normally be expected, as on the night of 4 November 1972 when one of this Squadron's aircraft was grounded by a severe failure of the air-conditioning system. You immediately took on the complex job, but did not have time to complete it before the end of your normal working hours. Aware that the on-coming shift, due to work-load and experience level would have difficulty completing the task you remained at your post until the repair was completed. On this occasion you were constantly on duty for seventeen hours.

This is but a single example of the consistently superior performance that you have displayed. In so doing you have contributed materially to the combat readiness of this Squadron's aircraft, and have distinguished yourself as an outstanding Marine NCO, showing not only the technical proficiency, but the leadership that is so essential to the smooth running of your shop.

DECLASSIFIED

You have reflected great credit upon yourself, the United States, the United States Marine Corps, and the United States Marine Corps. It is a distinct pleasure that I hereby award you this Meritorious Mast.

3. Action. In compliance with the above, an entry will be made in your service record book and in your promotion record. Additionally your reporting Officer is hereby directed to affix a copy of this Mast to your next regular fitness report.

4. Self-Cancellation. 31 May 1930.

S. C. BROWN

DISTRIBUTION "A"

MARINE ALL WEATHER ATTACK SQUADRON 533
Marine Aircraft Group 15
1st Marine Aircraft Wing
Fleet Marine Force Pacific
FPO, San Francisco 96602

1:DWC:pew
1650
18 December 1972

SQUADRON BULLETIN 1650

From: Commanding Officer

To: Distribution List

Subj: Meritorious Mast

Ref: (a) MCO 1650.9

1. Purpose. To publish the awarding of a Meritorious Mast to
Corporal William F. WEITZEL, 046 46 54 97/6013 USMC

2. General. The following Meritorious Mast is awarded by the
Commanding Officer of Marine All Weather Attack Squadron 533
this date for outstanding and noteworthy performance of duty.
The citation is set forth in the following:

"Since joining Marine All Weather Attack Squadron 533 on
20 June 1972, you have been assigned as an A-6A Plane Captain
in the Line Division. During this period you have consistently
distinguished yourself by your skill, devotion to duty, and general
professionalism, both in your occupational field, and as a
Marine NCO in general. Working under the arduous conditions
of a combat deployment you have maintained the very highest
standards in your work, and have carried out all tasks assigned
to you with enthusiasm and the highest degree of competence.

However, where you have most clearly set yourself apart
has been on those numerous occasions when you have been assigned
extra tasks. Regardless of how difficult they were you approached
them with the same positive attitude, enthusiasm, and
competence that have characterized everything else you have done.
You have set an example to be followed by all with whom you work
and come in contact. Your military appearance, bearing, and
excellent physical condition have also been noteworthy throughout
your tour with this unit.

You have reflected great credit on yourself, this Squadron,
and on the United States Marine Corps. It is with the greatest
pleasure that I award you this Meritorious Mast".

SqdnBul 1630
18 December 1972

3. Action. The Adminstrative Section will ensure that a copy of this Bulletin is placed in the Service Record Book of Corporal WEITZEL. A copy of this Bulletin will be forwarded to the Commandant of the Marine Corps to become part of his permanent record.

4. Self-Cancellation. This Bulletin is cancelled for record purposes on 1 June 1973.

J. C. BROWN

DISTRIBUTION "A"

DECLASSIFIED

NAVAL MESSAGE

OPNAV FORM 2110-28 (REV. 3-61) S/N 0107-7664000

VMA(AW)-533 Aircraft Accident Report 5-73A

RELEASED BY G. BROWN, LCOL	DRAFTED BY E. L. TRAVIS, 1/2	PHONE EXT NR 228	PAGE 1 OF 2	PAGES				
DATE 26 NOV 1972	TOR/TOD	ROUTED BY	CHECKED BY					
MESSAGE NR	DATE/TIME GROUP (GCT)	PRECEDENCE	FLASH	EMERGENCY	OPERATIONAL IMMEDIATE	PRIORITY	ROUTINE	DEFERRED
		ACTION				XXX		
		INFO					XXX	

INFO VMA(AW) FIVE THREE THREE THREE.

TO: CNO WASH D. C.

COMMNAVFLTLANT NORVA

CINCPACFLT PEARL HARBOR

INFO: CINCPACFLT PHILA PA

NAVALFLEETCOM WASH D. C.

CNO WASH D. C.

COMMNAVFLTLANT PEARL HARBOR

CG FRAGTAG CAMP SMITH

CG PHILTAG NORVA

CG THIRD MAW MCAS MI KONO

CG SECOND MAW MCAS CHERRY PT

SEVENTH AIR FORCE SAIGON

CG FIRST MAW INTHONI

CG TASK FORCE DELTA MAW PHONG

COMPAIR/SETPAC PEARL HARBOR

CG NAVFORWING ONE P-73 MAW PHONG

COMMNAVFLTLANT NORVA

COMMNAVFLTLANT SAN DIEGO

CG ATRA PENSACOLA FLA

CHARTER/COMMNAVFLTLANT GREENVIEW ILL

EUPRES WASH D. C.

BT

UNCLAS FOR OFFICIAL USE ONLY //NOY750//

CNC PASS TO COMUS MAC

PRELIMINARY MESSAGE REPORT OF MAJOR AIRCRAFT ACCIDENT DIA (REPORT)

DISTRIBUTION:

(PAGE ONE ONLY)

E-1

TAB E

DATE/TIME GROUP (GCT)

UNCLASSIFIED

DECLASSIFIED

DECLASSIFIED

NAVAL MESSAGE

(AV-FRM-2110-29 (REV. 3-61) S/N 0107-705-4000)

RELEASED BY <i>2000, 1400</i>	DRAFTED BY <i>R. L. THOMAS 1/22</i>	PHONE EXT NR <i>111</i>	PAGE <i>1 OF 2</i>	PAGES <i>2</i>				
DATE <i>26 DEC 1972</i>	TOR/TOD	ROUTED BY	CHECKED BY					
MESSAGE NR.	DATE/TIME GROUP (GCT)	PRECEDENCE	FLASH	EMERGENCY	OPERATIONAL IMMEDIATE	PRIORITY	ROUTINE	DEFERRED
		ACTION				XXX		
		INFO				XXX		

CODE: GREAT 3750-2A (NMN: UNKNOWN)**ACT: GREAT 3750-2A**

1. UNKNOWN 1000, 2100, UNKNOWN.
2. UNKNOWN.
3. AAA, 1000.
4. VMA(AW)-533 2100.
5. ALFA.
6. UNKNOWN PRACTICALLY IDENTICAL TO 1000.
7. UNKNOWN PRACTICALLY IDENTICAL TO 1000.
8. UNKNOWN.
9. UNKNOWN.
10. UNKNOWN.
11. AIRCRAFT LAUNCHED AT 1000 ON A SINGLE AIRCRAFT MISSION, LAST RADIO CONTACT WAS 2000Z. FLIGHT/RADIO SEARCH INITIATED AT 2100Z. A SEARCH OF ALL POSSIBLE DIVING POINTS YIELDED NEGATIVE RESULTS.
12. UNKNOWN.
13. UNKNOWN.
14. UNKNOWN.
15. UNKNOWN.
16. UNKNOWN.
17. RUFFORD, W. A. MAJOR OPERATIONS OFFICER.

BT

DISTRIBUTION:

(PAGE ONE ONLY)

E-2

TAB E

UNCLASSIFIED

DATE/TIME GROUP (GCT)

DECLASSIFIED

CONFIDENTIAL

CONFIDENTIAL

TAB E

BDA FOR VMA(AW)-533 FOR DECEMBER 1972

1. Secondary Explosions: 17
2. Sustained Fires: 3
3. Guns: One 37MM
One Mortar
4. Bunkers Destroyed: 10
5. Trench Destroyed: 90 Meters

TAB E

E-1

CONFIDENTIAL

CONFIDENTIAL