
AMERICAL DIVISION

MAJOR GENERAL LLOYD B. RAMSEY

COMMANDING GENERAL

AVIATION SAFETY NEWSLETTER

"The aviator inspired with mission accomplishment is a true professional and deserves the highest praise. The aviator imbued with mission accomplishment at any cost is an unprofessional whose judgment is to be challenged. This amateur must either turn professional or get out of the flying business before he negates the efforts of those getting the job done."

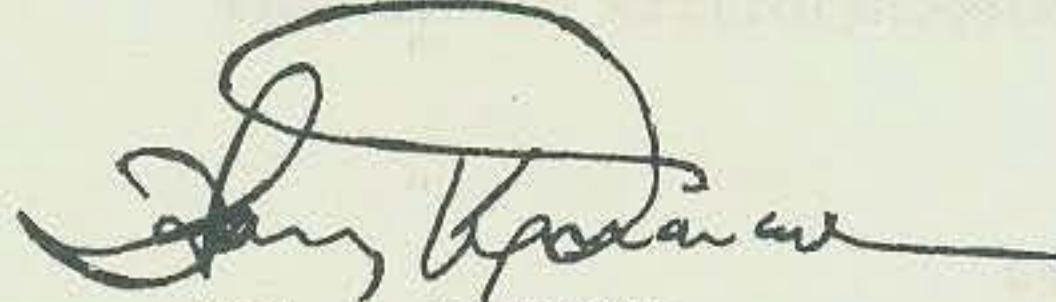
DEPARTMENT OF THE ARMY
HEADQUARTERS, 16TH COMBAT AVIATION GROUP
APO San Francisco 96374

AVDF-ABFS

23 May 1969

SUBJECT: Responsibility of Aviators

All Aviators


1. I am writing to you directly because I want you to get this straight from the "horse's mouth." I am not bypassing your commander. He knows the situation and supports my position.
2. As the commander of an aircraft you can do more to prevent an aircraft accident than any other individual directly involved in supervising or operating aircraft. The job of operations and flight leaders is to insure that you get all the information and expert advice that you need to successfully complete your mission. They have authority over you only insofar as the mission itself is concerned. When it comes to safety of flight, their position is reduced to an advisory capacity. You, and you alone, are responsible for a decision involving safety of flight. The decision is yours.
3. This is clear cut in the case where a definite inflight emergency already exists. What about the case where there is no emergency, but there is an unusual situation and the mission cannot be flown as originally planned? Again the decision is yours. The designation "aircraft commander" carries the same responsibility incumbent upon any other commander - that of assuming responsibility for acts of commission or omission by a subordinate member. The AC is responsible for the safety of his aircraft and the actions of his crew on all matters pertaining to successful mission accomplishment. This responsibility includes determination of the airworthiness of the aircraft, aircraft loading, compliance with air traffic procedures, decisions concerning weather operations, air crew duties, and evaluation of all factors pertaining to safe operation within the capabilities of the aircraft and crew.
4. You must realize the tremendous responsibility given to you when flying around the countryside with several souls on board.

AVDF-ABFS

23 May 1969

SUBJECT: Responsibility of Aviators

5. Our accident rate is very high. I want you to help me to improve it. Don't allow your competitive spirit to jeopardize safety. Mission accomplishment is our primary objective, however accidents which result from an unprofessional approach to mission accomplishment actually detract from our ability to support the division. Safety is an integral and essential part of mission accomplishment.

HANS J. DRUENER
Colonel, INF
Division Aviation Officer

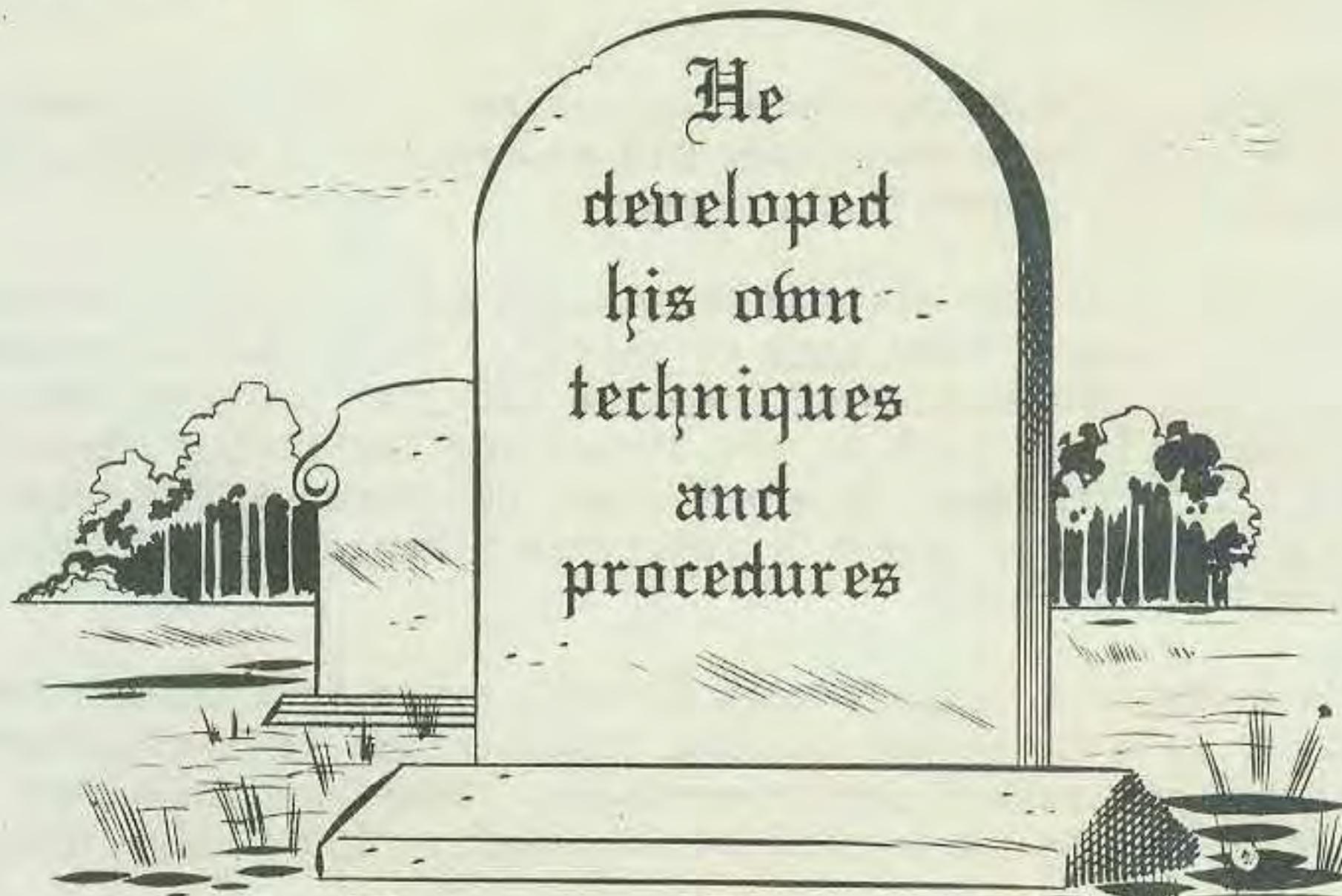
DIVISION AVIATION SAFETY OFFICER

I take this opportunity to introduce myself to the aviators of this command. On 18 May 1969, I became the Division Aviation Safety Officer replacing Major Price who was transferred to the 71st Avn Co as Commanding Officer.

As a graduate of the Safety Course with seven years aviation experience and a returnee to RVN, I welcome this opportunity to serve in this capacity and put to practicable application those facts and theories concerning safety that I have learned.

I feel confident that in the days ahead we can do something to decrease our accident rate. However, the safety officer can not do it alone. Safety is everybody's business. The only accident rate that we can accept is zero! Such a figure is difficult to obtain, but it can be done, if we work for it.

DONALD P. DETIVEAUX
Major, INF
Div Avn Safety Officer


* * * * *

PILOT NOTES

If you are unable to contact Salvation on FM or VHF, call on Div Arty Intelligence net and have them get Salvation on the air.

Be sure your navigation lights are turned on. Several aircraft have been observed flying in the Chu Lai area at night without any lights on. You might run into someone you know!

Have you observed any flight hazards lately? Did you report it? Did you fill out a Flight Hazard Report and turn it in. Let's report hazards so that they can be eliminated.

The following article was extracted from the May 1957 issue of the "FLYER", a publication of FEA. It was prepared by the Directorate of Flight Safety, Far East Air Forces.

It is an outstanding presentation in that its concept and philosophy of aircraft accident prevention encompasses the dynamic fundamentals beginning with the Commander and dealing with all personnel associated with the mission. Its scope is broad, for mentioned are Medics, FSO's, Cooks, Chaplains, Pilots, Crew Chiefs, Supervisors, Aircraft Accident Investigation Boards, and many others, all of whom are vitally important to the prevention effort.

This presentation is applicable to all aircraft accident prevention programs in the USAF. Implementation of the concepts and principles discussed herein will aid in a better understanding of the application of aircraft accident prevention to the achievement of maximum mission performance capability and preservation of the combat potential.

"FULL SUPPORT"

The aircraft accident picture in FEA looks better and better every day. The rate has shown a steady downward trend and never have we had so many accident free organizations. No one will be so bold as to credit this tremendous improvement to any one factor, but we will go out on the limb and claim that a large part of the credit goes to the hard work and firm efforts of safety conscious personnel. Swings around the circuit convince us that nearly everyone is putting out for Safety of Flight. And it's paying off.

Big organizations, small outfits, medics, FSO's, Commanders, cooks and chaplains are all getting into the safety game. Check the recent accident statistics with your FSO and you'll get the official picture of how safety effort pays off.

Naturally we are still having accidents and we will continue to try for even more spectacular decreases. Unfortunately most of the publicity is directed at the outfit that suffers mishaps. We say all too little about the many fine outfits that go month after month--some for years--without so much as a scratch. We write countless pages about how accidents happened but say all too little about how the safe outfits prevented accidents from happening. We all adhere to the slogan: Accidents Don't Happen; They Are Caused. Let's switch it around and believe that: Safety Doesn't Happen; It is Caused.

How do these outfits--the accident free ones--hang up their good records? Their methods are worth studying because they are accomplishing what is, or should be, the goal of every accident prevention program.

First, we will go on record as stating that these accident free outfits are not just "lucky". Never happen! They work at safety. We've checked a number of the outstanding records and in almost every case we brought forth one inescapable fact--the success is due in large part to the strong and unstinting support of the local commander. And that commander, in every case, has assured that each and every one of his people in a supervisory capacity is giving strong and unstinting support to the unit's flight safety program.

Each of these commanders and supervisors is well aware that behind the pilot, aircraft, and crew chief is a large and complex organization devoted primarily to the conduct of successful and safe flight operations. They each know that the only reason the Air Force exists is to conduct successful flight operations--and

successful flight operations are automatically safe operations. These successful commanders realize that flying is more important than baseball games, BX openings, Women's Club speeches, and stag night. Those latter items are not ends but merely support functions--important only if they contribute, and not detract from, flight missions.

They know that the combined work of the crew chief, pilot, and aircraft is merely the end product of the united efforts of all base personnel. They each know that a slip-up in any function--maintenance, surgeon, mess hall--can impair the efficiency of a flight and lead to an accident.

The successful commander knows the accident business personally. He doesn't toss the function off to someone else. Sure, he utilizes an FSO as an advisor but he is the active member of the team. The commander is fully aware that most of our accidents are the results of people slipping up; we call it PERSONNEL ERROR. He understands that Pilot Error, Maintenance Error, and Supervisory Error cause the bulk of our losses and, also, that these are the easiest to eliminate if the commander is willing to work at it. The successful commander is willing. He wades into his accident prevention program with every effort he can muster. He doesn't merely confine his participation to announcing that he is in favor of an aggressive safety program, that pilots will cease violating SOP's, and that the FSO will hold regular safety meetings. He does more. He participates in and supervises the safety programs. He assures that every function of his command leads toward producing an efficient, and therefore, automatically safe, operation.

There are many avenues of effort the successful commanders utilize to further their accident prevention programs but basically they are two categories. The first concerns preventing an accident before it happens. The second one has a lot of potential but its real value is frequently lost in the maze of tangents taken by some Accident Investigation Boards. This one is the practice of preventing future accidents similar to the one that has already happened.

Examining the methods that fall in the first category above, we find that nearly 60% of the aircraft accidents are charged to personnel error. Pilot, Maintenance, and Supervisory are the three main classes of personnel error. Major cause factors contributing to pilot error are: inadequate flight planning, incorrect operation of one or more of the aircraft systems; poor technique on the ground or in the air. In the supervisory group we have: poorly supervised aircrew training, aircraft operations, and weather facilities; inadequately supervised tower operations; poorly maintained airport facilities. Maintenance errors fall into two classes: improper maintenance supervision and inspection, and poor maintenance work.

The commander with the good safety records know all of the above. To them, the action necessary to prevent an accident before it happens is obvious. They re-evaluate the procedures and personnel assigned to the training, maintenance, and operations outfits within their commands. Thus they are able to isolate and correct any unsatisfactory situations. They direct periodical accident prevention surveys using the guide published by the Director of Flight Safety Research, Norton Air Force Base. These men know that critical selection of supervisors, ample indoctrination and orientation of all personnel, and regular training for all personnel can be combined to reduce the accident potential of any organization.

Now for category two--that of preventing future accidents similar to one that has already happened. This is a method the able supervisor utilizes 100%. A properly conducted Accident Investigation is one of the most valuable tools available to a commander in his unceasing fight to reduce accidents and to eliminate further human error. Accident Investigations can be next to valueless. If the Board stumbles around during an investigation and winds up with weak or incompetent

findings, they have done nothing to prevent future accidents. The wise commander never accepts this type of finding because he knows that he may be soon faced with another accident from the same unrevealed cause or causes.

Careful study of Aircraft Accident Board proceedings discloses that there is a tendency to play up the pilot responsibility factor and to deemphasize the supervisory responsibility. But supervisory skill is the best means we have of eliminating human error accidents. Except in the most extreme cases, pilot error will reflect on the supervision given the pilot. Somewhere in the operational supervision of the pilot someone failed to impress him with the correct way of doing a certain thing. The careful commander and the thorough investigation board are very self-critical when delving into an accident. The indirect and contributing causes of an accident are as important as the obvious mistakes someone made. These almost hidden causes may be the actual beginning of an accident potential that will continue to exist unless a careful examination of all the implications is made by the Aircraft Accident Investigation Board.

There will seldom be a pilot or maintenance error accident wherein, somewhere along the lines, someone was not lax in discharging his supervisory duties. When an Accident Investigation Board is convened, the commander must instruct the board that the primary duty of all members is to uncover ALL the facts concerning that accident and to make sound recommendations that will assist in preventing future similar accidents. He then, of course, must give full support to those recommendations.

There are other accident prevention devices available to the conscientious commander. The big one is TRAINING--training properly supervised and rigidly directed toward increasing the efficiency of the entire organization. The goal of training is the increased combat effectiveness of a unit, and one of the inevitable by-products of increased effectiveness is Flight Safety. Efficiency and safe operation of equipment go hand in hand. The commander who maintains a sound and steady training program reaps the double rewards of a sharper and safer outfit.

The next tool is Tech Order compliances. We always have with us a group of accidents in which non-compliance plays a large role. Constant supervision coupled with unrelenting inspection helps in wiping out this accident maker.

We can't, of course, leave the entire job to the commander and supervisor. In some way or other we are all supervisors even if we have only ourselves to supervise. Each of us is duty bound to do all he can to further the mission of our unit. From the cooks in the mess halls to the tower operators, self-pride and determination to do the best job possible is a duty we owe to the commander and to the Air Force.

Each of us is standing behind the pilot who must eventually prove our capabilities. His safe take-off, safe flight, and safe return while accomplishing a successful mission are the rewards we get for a job well done. The commander can do a certain amount of planning and directing but the balance of the details is up to all of us.

* * * * *

ONE girl in low-cut dress to another at military ball: "Don't dance with the general—his medals are cold."

—*La Domenica del Corriere*, Italy

NIGHT TAIL ROTOR FAILURE - BY THE BOOK

At approximately 0200 hours on 7 May 1969, WO1 Alexander P. Cameron, Co. A, 123rd Avn Bn, "Pelicans," was aircraft commander of a UH-1D assigned to support a medivac mission south of the Hoi An River. By providing continuous illumination over known enemy positions, a safe evacuation of the injured personnel was accomplished. Upon completion of the mission WO1 Cameron directed his aircraft for the return flight to Chu Lai.

The pilot, WO1 John R. Elwell, Co. A, 123rd Avn Bn, was flying at this time. They were approximately due east of LZ Baldy, at 3500 feet along the coast, when the aircraft had a complete loss of directional control. WO1 Cameron contacted the "Warlord" gun team, Co. B, 123rd Avn Bn, and advised them of their situation. The gun team said they would follow them back to Chu Lai.

When the tail rotor failure occurred the aircraft yawed about 80 degrees to the right. WO1 Elwell immediately decreased power and started a descent. This caused the aircraft to spin, so WO1 Cameron told the pilot to increase airspeed and power. By doing this the aircraft streamlined into a 30 degree crab.

Co. A operations and Chu Lai East tower, the intended point of landing, were contacted. East tower told WO1 Cameron they would have crash rescue standing by when they landed.

The crew reacted extremely well in the emergency situation. After the initial failure, the crew chief, SP5 Leslie W. Hines, and door gunner, PFC Thomas Lewis Jr., immediately jettisoned the flare barrels. They noticed the tail of the aircraft was throwing sparks and informed WO1 Cameron of that particular situation. A small fire was ignited, but extinguished itself quickly.

About 5 miles out from Chu Lai Base, WO1 Cameron took the controls and landed the aircraft without further mishap. WO1 Cameron stated the actual landing was exactly as had been taught by the company IP's during check rides. It was a school book type landing. It is fortunate that he had been instructed in this type of emergency earlier, for without this knowledge, he would have lost the aircraft.

* * * * *

KNOW YOUR EMERGENCY PROCEDURES, ANYTHING COULD HAPPEN DAY OR NIGHT. REMAINING CALM CAN, AND DOES SAVE LIVES.

SAFETY PRECAUTIONS

During the past sixty days, there have been three UH-1 helicopters go down due to engine failures. The reason for these engine failures was the quick-disconnects on the fuel and oil lines not being properly connected.

There are four quick-disconnects mounted on the engine deck to the left side of the engine. The female portions of these quick-disconnects have three pins protruding out of them. When connected, if these three pins are not protruding, the quick-disconnect is improperly connected. The three pins will be protruding if the quick-disconnect is properly installed and seated.

The crew-chief should make a daily check before the first flight of each day to insure that the lines are properly connected. The pilot should also add this check to his pre-flight for his own benefit.

One pin not protruding could be the cause of your ship having an engine failure.

Before the first flight of each day the pilot and crew-chief should insure a very positive pre-flight to include checking under the tail rotor drive shaft for loose foreign objects. Recently a sheet-metal bucking bar was seen flying through the air. Upon investigation, the bucking bar was found to have been under the tail rotor drive shaft and a drive shaft clamp threw it through the drive shaft cover. Now we can scratch one hangar bearing, one clamp set, and one section of tail rotor drive shaft. Had someone looked a little closer, this could have been prevented. DON'T DEPEND ON LUCK!! Look around. - - AND LIVE.

* * * * *

JUNE WEATHER

During June, the frequency of thunderstorms in RVN continues at a high level. Days follow a regular pattern, with cumulus clouds forming in the morning, increasing and building vertically during the afternoon, and dissipating at night. The showers and thundershowers which are produced reach their maximum during the late afternoon and early evening, although they can occur at any hour. The northeastern coast continues to experience much less activity than the regions over and west of the mountains.

Flying conditions continue to be very similar to those during May. Visibilities are generally good, and winds are normally less than 15 knots. Ceilings, when they occur, are usually above 2500 feet, except in higher elevations. The main exception to these favorable conditions is provided by the thunderstorm. Visibilities can temporarily go down to one mile or less in heavy showers, winds can become extremely gusty, and low stratus below 1000 feet often results along with the precipitation. Thunderstorms during May, by the way, remained for the most part over the mountains. Very little movement over the coastal lowlands was observed. June will probably be somewhat different in this respect.

However, the thunderstorm does not provide all of the poor flying weather. Total cloudiness shows a slight increase in June, and some of this is low stratus which frequently hangs over the mountains at night and lifts or dissipates only after sunrise. This cloudiness can restrict operations, especially early in the morning. Surface wind speeds continue to show a gradual decrease during the

the spring-summer period, but the sea breeze along the coastal areas can still produce winds strong enough to cause critical crosswinds at landing sites. Of course, gusty surface winds and turbulence aloft are always to be expected in the vicinity of thunderstorms.

Density altitudes remain high in June, indicating the decreased lift available to aircraft in warm, light air. At sea level, the density altitude generally ranges between 1500 and 3500 feet.

Typhoons and tropical storms are possible in June, but not very probable. Since 1947 only three typhoons have come near enough to affect the coastal areas with one or two days of heavy precipitation. Late summer and fall is the season of maximum frequency of tropical storms in this area. Any tropical storm will be closely watched and all agencies kept informed of its movement by the Staff Weather Office.

Staff Weather Office

* * * * *

AVIATION FIRST AID, THE OJT PHYSICIAN

Couple the normal hostile environment that aviators and crew members work in, the air, with the hostile environment waiting down below in Vietnam and you have a situation conducive to injury. With serious injury occurring during a mission the only person immediately available for aid will probably be your crew chief, door gunner or your fellow pilot. Or you might be the only one around to act as the "Doc" should they get badly hurt in an accident or by ground fire. The first few minutes after a critical injury are extremely important - - they might make all the difference in the world to you and your crew members. You should be able to react immediately for there might not be time to wait for Dust Off or trained medical personnel.

There are four simple basic rules of emergency first aid. One trick to remembering these is to couple them with A, B, C and D. They are:

a. AIRWAY: The airway is that passageway the air travels from the nostrils and mouth down to the lungs. Blockage at any point along the way can produce suffocation and prove fatal. Unconscious, semi-conscious or severely injured persons may have a blocked airway and be unable to clear it themselves. Blockage may be caused by the tongue, vomit, chewing gum or by injury to the surrounding structures. To make sure that the airway is cleared, open the mouth and inspect its contents both visually and with your fingers. Remove all foreign debris. If the tongue is to the rear, pull it forward. The unconscious person can breathe easier with his head tilted slightly backward and his chin extended away from his chest. Should the patient vomit while he is unconscious or semi-conscious, he should be rolled on his side or stomach with his head and shoulders lower than the rest of his body. The force of gravity will carry the vomit out of his mouth, not into his airway and his lungs.

If the injured person is blue or obviously having trouble breathing, think of his airway and attempt to clear it. Should the person stop breathing, mouth-to-mouth resuscitation should be started after the airway has been cleared.

b. BLEEDING: Specifically, STOP the bleeding. As you know, there are two types of bleeding -- arterial, from the artery and venous, from the vein. The arteries lead directly from the heart -- arterial blood is bright red being full of oxygen. Arterial bleeding is a more serious problem than venous bleeding and requires faster action. Because arterial blood has the full force of the heart behind it, it comes in spurts with each heart beat and large quantities may be lost very rapidly. Venous bleeding is dark red and steady, not bright red and pumping. Bleeding can be stopped with direct pressure. Arterial bleeding will stop with localized, firm pressure, (fingers over a guaze dressing) over the bleeding point. It may also be stopped by finger pressure over a pressure point between the wound and the heart. Pressure points lie wherever you can feel a pumping vessel over a bone. Venous bleeding can usually be stopped with a pressure dressing applied directly over the bleeding site. Severe bleeding in an arm or a leg can be controlled with a tourniquet.

c. CONTROL SHOCK: Persons in shock feel faint or may actually lose consciousness. They are usually cold, sweating, pale and they may be nauseated. Persons in shock may die because of decreased blood flow to the brain or the heart. Treatment: The patients head is placed lower than the remainder of the body. The simplest way to do this is to place the patient on a flat surface and raise his feet. There is one exception to this method. The patient with a severe head wound should have his head higher than the rest of his body.

d. DRESS the wound: A clean or sterile dressing will decrease contamination of the wound and risk of infection. With pressure it may help control bleeding.

Where do you get materials to work with? Each aircraft has the basic aircraft first aid kits. These contain two $7\frac{1}{2}$ " x 8" field dressings, one 4" x 4" gauze compress, one 4" x 7" field dressing, one package of petroleum gauze for use over chest wounds that are sucking air, one tourniquet, one eye dressing kit, two bottles of benzalkon chloride which is an antiseptic, one package of bandaids and one bottle of water purification tablets.

You have the basic equipment. Remember your A, B, C and D's. It may make a big difference for you or for your crew members.

HARRY B. RICHARDSON JR
Captain, MC AMO
123rd Avn Bn Disp

* * * * *

SOMETIMES you think the whole world is falling, and it's only yourself
that's leaning.

-- Pearl Bailey, *The Raw Pearl* (Harcourt, Brace & World)

Milestones

Look who's now 40 years old--Mickey Mouse! If that makes you feel like standing in the Social Security line, consider that Little Orphan Annie is 44, Blondie 38, Dick Tracy 37, Li'l Abner 33, Superman 30--and even Charlie Brown is 18.

-- Bob Talbert in *Detroit Free Press*

"WELL DONE"

W01 Alexander P. Cameron made a successful Precautionary Landing after a complete tail rotor failure on 7 May 1969.

* * * * *

RECAP OF MAY AVIATION MISHAPS

Major Accidents:

- a. 5 May 1969, UH-1H, 71st Avn Co. Acft flying with 20 minute fuel warning light on. Acft lost RPM and autorotated. RPM was regained on the ground, AC attempted to fly to an LZ a short distance away. The engine quit and acft was again autorotated. The acft landed hard in a rice paddy, tail rotor and tail boom hit paddy dike. No injury.
- b. 6 May 1969, UH-1H, F Trp, 8th CAV. Acft was picking up to a hover. Right skid caught on PSP causing acft to pivot to the right. Acft broke loose and pilot bottomed pitch. Tail boom hit revetment, acft landed hard and spread skids. No injury.
- c. 15 May 1969, UH-1H, 174th Avn Co. While making an approach to LZ at 2 feet, acft started spinning to the left. AC initiated hovering autorotation. Acft struck ground cracking tail boom, separating head and causing transmission to go through roof. No injury.
- d. 17 May 1969, UH-1C, 71st Avn Co. Acft refueled at POL point. Acft stabilized at a hover at 6400 RPM. On take-off acft lost RPM, landed in rice paddy, collapsed skids and turned over on left side. Minor injuries.
- e. 19 May 1969, UH-1H, F Trp, 8th CAV. AC made approach to beach, right skid dug in sand and acft turned over on right side. Damage to main rotor, transmission and tail boom. Major and Minor injuries.
- f. 25 May 1969, UH-1H, F Trp, 8th CAV. Acft was at a 25 feet hover with engine RPM at 5800. Explosion occurred in rear of acft and RPM made a fast drop. AC took acft right to avoid hitting personnel on the ground. Acft then went over edge of LZ and crashed. Minor injuries.
- g. 27 May 1969, UH-1H, 174th Avn Co. Repositioning from flare bunker to flare dump, at a hover approximately 6 to 8 feet. Moving acft hit main rotor of stationary acft with tail rotor. Acft made hovering autorotation and landed. No injury.

Minor Accidents:

29 May 1969, UH-1C, 71st Avn Co. Loss of RPM, EGT rose to 1000 degrees. AC entered autorotation and engine failed. Autorotation completed with spread skids, severed drive shaft, cracked chin bubble, and damaged skin. Minor injury.

Precautionary Landings:

- a. 7 May 1969, UH-1D, A Co., 123rd Avn Bn. While flying back from LZ to Chu Lai acft had complete tailrotor failure. AC excuted a successful running landing with no damage to acft. No injury.
- b. 12 May 1969, CH-47B, 132nd Avn Co. Nr 2 chip detector light came on, Nr 2 engine quit. Fire developed in engine and was extinguished. Fire started again and was extinguished. Acft proceeded to Duc Pho. No injury.
- c. 15 May 1969, UH-1D, A Co., 123rd Avn Bn. AC heard grinding noise while in flight and experienced hydraulic failure. Made precautionary landing with no damage to acft. No injury.
- d. 16 May 1969, UH-1H, A Co., 123rd Avn Bn. Acft was flying in vicinity of Hill 29 when engine oil temperature began to rise and engine chip detector light came on. AC made precautionary landing at Hill 29. No injury.
- e. 18 May 1969, UH-1D, A Co., 123rd Avn Bn. While hovering prior to take-off a high frequency vibration was felt in the pedals and acft. It stopped after approximately one minute so acft took off and vibration again started. AC returned to heliport and landed. No injury
- f. 28 May 1969, UH-1H, 71st Avn Co. Acft was circling LZ, AC heard whine, followed by hydraulic failure. AC made running landing at LZ. No injury.

Forced Landing:

- 9 May 1969, UH-1H, F Trp, 8th CAV. At an altitude of 350 feet and 65 knots on take-off, explosion occurred with grinding noise. Engine RPM dropped and AC entered autorotation and made forced landing. No injury.

Combat Damage:

- a. 8 May 1969, UH-1C, 176th Avn Co. CLASSIFIED.
- b. 12 May 1969, UH-1C, 174th Avn Co. Flying cover for downed acft, acft took round in 40mm box and 40mm propellant exploded. AC thought acft was on fire and made landing. No injury.
- c. 12 May 1969, UH-1C, 174th Avn Co. Acft was on target attack and received intense Cal .50 fire, acft caught on fire. AC made emergency landing and acft was destroyed. 2 fatalities.
- d. 13 May 1969, UH-1C, 176th Avn Co. Acft was hit with suspected Cal .50 fire while on target attack in support of CA. Acft could not be recovered and was destroyed by hostile forces. No injury.
- e. 15 May 1969, CH-47B, 178th Avn Co. Acft received hostile Cal .50 fire. Acft caught fire and landed at LZ and burned. Acft 90% destroyed. No injury.

CREWCHIEF'S CORNER

The increased output of the T53-L13 engine in the Huey Cobra and "H" model means an increased velocity air flow - through the same diameter air inlet as on earlier engines.

So, you can see that FOD is even more critical on this baby. No matter what Huey you crew, one of your most important maintenance checks is to eye the engine inlet area before and after every mission.

Before you mount your charge, eye the soles of your jungle boots. Stones get wedged between the cleats and can fall into the engine inlet area. Sure, the sand and dust separator reduces erosion of the compressor blades and housing. It won't keep solid objects from entering the engine. A stone sucked into a churning compressor can make mince meat of the engine for real! Keep those brogans clean.

When you mount your bird leave the tool box on the ground - or in the troop compartment in bad weather. It's hard to keep track of the tools you use if you lug the tool box up to the engine deck or to the roof and work directly out of it. Take out only the tools you need and count them. Then go to work on your baby.

While you're making with the wrenches keep track of the hardware - nuts, bolts, washers, cotter pins, safety wire. The best means to dispose of these is by having a small FOD bag strapped to your belt. You'll be amazed at how quickly it fills up.

If you drop a part in the engine inlet area, like under the separator which doesn't have the new screen, dig - dig - dig, man! Go in there and find it or the stage will be set for engine FOD.

Loose cowling and inspection plate fasteners are a real problem. If one little dzus fastener comes out and hits the fan, CRUNCH! It's umpteen hours of down time and much moola for an engine change. During inspections of the engine inlet area be sure those fasteners are secure.

Wind up your maintenance by counting the tools as you put them back into the tool box.

Credit: PS Booklet

613 days
accident free

Incidents:

a. 18 May 1969, OH-6A, A Co., 123rd Avn Bn. On shut down at low RPM, ARVN CH-34 hovered nearby causing blades to flex down and strike tail boom. \$50.00. No injury.

b. 24 May 1969, UH-1H, A Co., 123rd Avn Bn. On final approach, rotor wash set off friendly booby trap. Minor injuries.

c. 25 May 1969, OH-6A, F Trp, 8th CAV. On landing the pilot rolled the throttle off to flight idle. Pilot noted that N1 was at 68% and he then asked the observer to roll his throttle to bring the N1 to 62%. The observer rolled his throttle to full and before the pilot could correct this error the acft came to a hover and fell through spreading the skids. \$200.00. No injury.

d. 30 May 1969, OH-6A, B Co., 123rd Avn Bn. On VR mission acft was at tree level and hit tree breaking three chin bubbles. No injury.

* * * * *

Soldier, as career advisor, it's my job to try and talk men into reenlisting - - - HOWEVER, in your case

MAY 1969 AVIATION ACCIDENT EXPERIENCE

AMERICAL DIVISION - COMBINED ROTARY WING/FIXED WING ACCIDENT RATE

MAY 1969

FY69 CUMULATIVE

<u>Unit</u>	<u>Hours</u>	<u>Accidents</u>	<u>Rate</u>	<u>Hours</u>	<u>Accidents</u>	<u>Rate</u>
<u>14th Bn Hqs</u>	55	0		709	1	141.0
71st Avn Co	2860	3	104.9	27176	7	25.8
*132nd Avn Co		0		5896	0	00.0
174th Avn Co	2401	2	83.2	27904	11	39.4
176th Avn Co	2967	0		28228	4	14.2
*178th Avn Co		0		5690	1	17.6
<u>14th Avn Bn</u>	<u>8283</u>	<u>5</u>	<u>60.4</u>	<u>95603</u>	<u>24</u>	<u>25.1</u>
<u>123rd Bn Hqs</u>						
A Co., 123rd	2144	0		18796	3	16.0
B Co., 123rd	1152	0		10600	2	18.8
**132nd Avn Co	1027	0		5093#(11113)	0	00.0
**178th Avn Co	899	0		4750#(10440)	1(2)	21.1#(19.2)
***F/8th CAV	708	2	282.5	708#(14324)	2(8)	282.5#(55.8)
<u>123rd Avn Bn</u>	<u>5903</u>	<u>2</u>	<u>29.6</u>	<u>39947</u>	<u>8</u>	<u>20.0</u>
<u>335th TC</u>	<u>144</u>	<u>0</u>		<u>1548</u>	<u>0</u>	<u>00.0</u>
<u>16th Gp Hqs</u>	<u>55</u>	<u>0</u>		<u>1692</u>	<u>1</u>	<u>59.0</u>
<u>16th Avn Gp</u>	<u>14385</u>	<u>7</u>	<u>48.7</u>	<u>166873</u>	<u>35</u>	<u>21.0</u>
<u>11th LIB</u>	<u>487</u>	<u>0</u>		<u>4285</u>	<u>1</u>	<u>23.3</u>
196th LIB	300	0		4045	3	74.2
198th LIB	298	0		4087	1	24.5
****F/8th CAV	808	1	123.8	13616	6	44.1
Div Arty	1008	0		8536	7	82.0
D/1/1	1181	0		1181	0	00.0
<u>Americal</u>	<u>18467</u>	<u>8</u>	<u>43.3</u>	<u>123226</u>	<u>43</u>	<u>34.9</u>

* 1 July 1968 to 31 December 1968

** 1 January 1969 to 30 April 1969

*** After 15 May 1969, (708)

**** Prior to 15 May 1969, (808)

Total Company time/rate for FY69

USARV Cumulative Rate - 1 July 1968 thru 30 April 1969

Rotary Wing and Fixed Wing-----	27.2
Rotary Wing Only-----	29.7
Fixed Wing Only-----	11.8

HEADQUARTERS UNITED STATES ARMY VIETNAM
APO San Francisco 96375

PAMPHLET
NUMBER 95-23

30 April 1969

Aviation
VOLUME IV NUMBER 4

1. PURPOSE: To supply information and assistance to Army aviation units in RVN:

2. GENERAL: This headquarters does not necessarily endorse the professional views or opinions that may be expressed in this pamphlet apart from official notices.

(AVHAV)

FOR THE COMMANDER:

LEO B. JONES
Major General, US Army
Chief of Staff

ED V. HENDREN Jr.
Colonel, AGC
Adjutant General

DISTRIBUTION:

X (Avn) Plus
3 AVHAG-A
50 AVHAG-AP
1 AVHAG-AR
300 AVHAV-S
6 CINCUSARPAC
1 USARPAC Hist Unit
1 MACV AG M&D Br, APO 96222
1 AVHGF-M-(RCO)
3 III MAF PM Ofc, Armed Forces Police Bldg, APO 96337
1 VNMA Advisory Det, Advisory Team 34, APO 96204

Designation of All Army Aircraft

OBSERVATION SERIES			HELICOPTER SERIES		
DESIGNATION	ENGINE	POPULAR NAME	DESIGNATION	ENGINE	POPULAR NAME
0-1A	0-470-11B	BIRD DOG	UH-1A	T53-L-1A	IROQUOIS
0-1D	0-470-15		UH-1B	T53-L-5,9,11	
0-1E	0-470-11B		UH-1C	T53-L-5,9,9A,11,11B	
0-1G	0-470-11B		UH-1D	T53-L-9,11	
UTILITY SERIES			UH-1H	T53-L-13	
U-1A	R-1340-61	OTTER	AH-1G	T53-L-13	COBRA
			TH-1G	T53-L-13	
U-6A	R-985-AN-39A	BEAVER	OH-6A	T63-A-5A	CAYUSE
RU-6A	R-985-39A				
U-8D	0-480-1A	SEMINOLE	OH-13E	0-335-5D	SIOUX
RU-8D	0-480-1A		OH-13G	0-335-5D	
U-8F	0-480-3		OH-13H	0-435-23C	
U-8G	0-480-1A		OH-13K	6VS-335A	
U-9B	0-435-G1B6	AERO COMMANDER	OH-13S	0-435-25A	CHICKASAW
U-9C	0-480-A1A6		UH-19C	R-1340-57	
RU-9D	0-480-B1A6		UH-19D	R-1300-3D	SHAWNEE
U-10A	0-480-G1D6	COURIER	CH-21B	R-1820-103A	
			CH-21C	R-1820-103A	
U-21A	T74-CP-700	UTE			RAVEN
RU-21A	T74-CP-702		OH-23B	0-335-5D	
RU-21D	T74-CP-702		OH-23C	0-335-5D	
			OH-23D	0-435-23C	
VTOL AND STOL SERIES			OH-23F	0-540-9	CHOCTAW
OV-1A	T53-L-3,-7	MOHAWK	OH-23G	0-540-9	
OV-1B	T53-L-3,-7		CH-34A	R-1820-84A	
OV-1C	T53-L-3,-7		CH-34C	R-1820-84C	
TRAINER SERIES			CH-37B	R-2800-54	MOJAVE
TH-13T	0-435-25A	COCHISE			
T-42A	IO-470-L		CH-47A	T-55-L-5/7	CHINOOK
			CH-47B	T55-L-7C	
TH-55A	HIO-360B1A		CH-47C	T55-L-11	
		OSAGE	CH-54A	T73-P-1 JFTD12A-1	TARHE
T-41B	IO-360-D				
TO-1A	0-470-11B		AH-56A	T64-GE-16	
TO-1D	0-470-15	MESCALERO			CHEYENNE
TO-1E	0-470-11B				

PREPARED BY:
U.S. ARMY AVIATION MATERIEL COMMAND