9

10

1

12

13

14

15

16

17

18

19

- 20

21

comes out in foot pounds as 1,454,700,000.
THE COURT: I rioticed that.
MR. LEWIS: And that seems to me, Your Honor, it

is a lot of force,.

.- -

THE COURT: Well, thank you, Mr. Lewis.

That is where I got short circuited on this

thing, Mr. Dubuc. When I realized that the jury was being

told 1.45 times 10 to the 9th-powe£, when fhe jury would
understand it better if yéu said 1,450,000,000 foot pounds.

This thing is getting to be a magic show here.

MR. DUBUC: We are not trying to do that.

THé COURT: Well, somebody didn't try to do it.
They did it.

MR. DUBUC:- First of all, Your Honor, I don't
believe.he is saying anything about constant speed. He is
talking about a consﬁant deceleration rate. That is what
he is talking about.

THE COURT: Constant deceleration?

MR. DUBUC: Deceleration.

THE COURT: He said constant speed.

MR. DUBUC: Maybe we can read it back.

But I think what he is talking about is a constant

deceleration, And we have had testimony to that effect
already from several witnesses who have described, at least

the people that were in the'airplane, deceleration.
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If he said "speed", that is not what he meant

to say. I will ask him to correct that.

I am talking about deceleration.

o He has a formula and he has done also the

connectic (sic) energy computation. If you want him to
amplify thaﬁ, fine. I was going to save the time of doing
it, but I will be glad to have him amplify it.

I am trying and only proffering a similiar kind
of expert's testimony that is designed as my rebuttal to
Mr. Timm's, who was permitted to testify about a terminal °
impact, as Your Honor knows, of massive magnitude of force
under situations of terminal impact.

- THE COURT: I'm not very sympathe;ic to the
suggestion that this is a sufprise because I don't see how
this case could have been tried without this kind of
calculation. And I assumed there would be one on both
sides. It is elementary. .

But I am concerned about the confusion that is
injected by using this 9th power, which has the affect of
distracting the jury from the point.

I am also concerned about the mixing of bricks
and straw, namely, calculations and a lot of argumentation
and the repetition of.the argument for emphasis. That
witness ought to give us the information and get off the

stand.
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MR. DUBUC: All right.

THE COURT: So, let's do that.

MR. DUBUC: If he doesn't want him to complete
the calculation, I can just leave it. |
:;j THE COURT: Let's complete the'caléulation.

MR. DUBUC: Cémplete the calculation. Okay.

Then I would like to ask him kinetic ené}gy and
make it clear rather than putting-it the way Your Honor
or the way it was sugges?ed by counsel. I will ask him
about kinefic energy and I will ask him what affect
deceleration has on existing kinetic energy of a body.

THE COURT: Let me see what Mr. Lewis' other
objection is.

MR. LEWIS: Your Honor, the first thing I would
call to the Court's attention is that Dr. Stark, who was
in the troop compartment and their witness, said that the
deceleration of the troop compartment was a series of
crashes. I can find it, given the opportunity, but that
is clearly what he said. He didn't suggest that it was
smooth at all,

THE COURT; You get the impression that this
thing is just gliding through vasoline.

MR. LEWIS: No, I don't think so, Judge.

THE COURT: That is the way the testimony is.

MR. LEWIS: That is right, sir.
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) 1 Their witneés said it was a series of crashes. |
é%%g 2 I can find it and I will ask counsel to do that. |
3 THE COURT: You don't have to remind me of that.
(f\ 4 | I remember that. "
5 The point is this is still the basic really
6 arithmetic of this situation aﬁd it scems to me it is
7 essential to the case. You can dovall kinds of things on '§
' !
8 cross-examination. But I don't think it is objectionable i
_ ‘ . : -
Y to introduce Newton's law into this accident. E
’ |
io MR. LEWIS: I don't either, Judge.
11 o The problem is that Newton's law requires the s
12 element ofvtime. They ﬁave no deceleration time, Judge. g
C(;% 13 If you knew how quickly that troop compartment or whatever ;
14 decelerated from one speed to another that is how you get
15 - the "G" forces, Your Honor, and it just cannot be done
16 without knowing that elcment and he doesn't know that
17 ' element and none of these people are able gé give any
18 estimate of it with any kind of reliability. And that is
19 very essential.
- 20 ' TIHE COURT: Won't that come out on cross—cxamina-
2 tion?
22 °  MR. LEWIS: Well, Your Honor --
23 THE COURT: Sce, we have a situation here. Even
24 though we don't know the quantity of it, we know that there
P ;’ifwas an impact, a very largé impact, and a dispersion of |
. | T
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1 the force.

? Now, the jury, I don't know whether any of the

3 jurors know physics or not. They are entitled to have some
4 ) ggplanation.. They are going to be like in Plato's cave.
5| Egéy are going to see it very dimly beca;se it isn}t done

0 with a very bright light, probably beccause there isn't much
7 l data. - ‘

To me this is as fair a way as illustrating it
Y - as describing an impact of two railroad trains going head-oh
10 fifty miles an hour. Because there wasn't a head-on col- .
H lison, any more than there was a deceleration over a

- period of time.

(-\,_ I3 ‘ If we believe in the jury system, and if you

14 cross-examine effectively, they will have an adequately
15 bright, relatively dim view of what happened.

o MR. LEWIS: Well, if it please the Court, the

17 witness on voir dire said to me the element of time. And

1 I would ask as a proffer of what time they say this matter

19

decelerated.
|
- & THE COURT: He has a formula here that asks him
21 to give not time, but time squared, and he has to £ill
o 2 that in. I don't know how he is going to do it. Maybe he |
: i
23 : !
has an assumption for that. i
2l MR. LEWIS: This is presumably upon the basis

e . . ‘
% of a hypothetical, Your Honor. He asked him to assume

!f"
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this, that and the othgr thing.

THE COURT: Let's hear the proffer.
What is the time in this formula?
MR. DUBUC: The time?

I will have to ask Mr. Edwards ;boﬁt the time. ;
TIE COURT: DBring Mr. Edwards back.

[Whercupon, Mr. Ldwards enters the court;oom
and resumes the witness stand.]

THE COURT: Mr.'Patrick, pull that .back so that
Mr. Dubuc can see hi; witness.

Do you want to make that inquiry very quickly?

BY MR. DUBUC:

Q Well, Mr. Edwards, the question has been raisced
as to your formula, which is the distance of the velocity
versus time in a voir dire response.

Can you tell us how you took care of the factor
of time?

A Yes, I can.

I started to show you the mathematics as to how
you can take distance and velocity and get time from that
.and/or acceleration.

Q How do you do that?

| Do you need the board to do it? '
A I would like to go through it on the board for

you, if you don't mind.

P
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1 :THE COURT: I have the formula very mucy in
2 mind and in my head.
. 3 Do you assume time or do you calculate time by
<~
- 4 having distance and velocity?
5 |- . THE WITNESS: I calculate time‘by having distance
6 and velocity. |
7 THE COURT: And velocity is assumed to b; 27072
| . .
4 THE WITNESS: That is correct. 4
2 MR. LEWIS: May I ask one question?
10 THE COURT: Yes. : .
1 ‘ Let Mr. Lewis inquire a little further.
12 BY MR. LEWIS:
it Q It would make a difference, wouldn't it, if it
4 was not a smooth, constant rate or deceleration?
15 A - Yes, it would.
1o Q Have you taken anything into consideration on :
17 the question of whether it was a smooth or constant rate
14 of deceleration?
19 What data do you have, if any, on that?
. 20 | What elements have you considered?
2 A I took some things into consideration, yes, I
) 2 did.
2 Q Did you take into consideration Dr. Stark's
24 testimony?
S A Dr. Stark?
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Q Yes. .
The passenger in the troop compartment.
A I don't know if I recall anything from Dr. Stark.

Q Let me ask you this. |
Did you take into consideratioé thé fact of the
sentence that I'm goinyg to recad you oﬁt of the accident
investigationvreport: Approximately halfway throdgh the
turn the aircraft nosed down at a'rapid rate. Seeing that
they would be unable to reach the runway, the pilot rolled
the wings level and applied power to the full throttle .
capacity. All landing gear was noted in the down and lock
position by the flight engineer. Immediately prior to
the impact the pilot retarded the throttle to idle.

Did you take that into consideration?

A Yes, I did.

Q Now, during the period that the full throttlgs
were going on, there was no recording of the power and
velocity; was therec?

A I don't believe you can.say that is correct, sir.

Q I thought you said three point some seconds
before the first téuchdown there was no recording of
velocity on the MADAR tape?

A That is correct.

THE COURT: I understand that.

Let's get the jufy back and complete this.
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I will take'a five-minute recess.

[Recess. ]

2347 -A
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resumed the stand and testified further as follows:

coTY o
(Whereupon, the following took place outside of
the hearing of the jury:)
Whereupon,

CAPTAIN JOIIN EDWARDS

THE COURT: Are you going to continue with the

calculation? *
MR. DUBUC: I thought that is what you wanted me to
do.
THE»COURT: I think you better terminate so that

Mr. Lewis will be able to develop the difference between

the figures.
MR. DUBUC: He has got the G figures there.
Can I ask him a question about the kinetic energy

versus the G force?

THE COURT: I think the way this thing fell, I think

Mr. Lewis is entitled to develop the point.

‘'’
tiy

any other fairer way
MR, DUBUC:

kinetic energy which

the G force, then my

THE COURT:

the 1.4547 X 10 to the 9th power without Mr. Lewis having an

opportunity to correct it on cross-examination, I will hawe to

say something to the

to do it,

I can't think of

t

I was going to tie his testimony on
he has computed to what he has done on
examination will be complete.

If you correct the 1,4547 that I have,

jury about it.
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- force is when you push against the table. Energy is something

2349¢
MR, DUBUC: No, I am going to ask him about the

statement about kinetic energy made by another witness. lle

has calculated it into Gs. I am going to ask him what

kinetic energy is and what happens on deceleration such as
‘he described.

Then Mr., lewis can cross-examine?

THE COURT: -
MR. DUBUC: Yes. )

THE COURT: Bring back the jury.

(Whereupon, the following took place in oéen court:)
THE COURT: Mr. Dubuc,

DIRECT EXAMINATION (Continued)
BY MR. DUBUC:

Q You have told us about the computation with some

G forces. Previously you mentioned a computation you made as .

to kinetic energy. Do you recall that?

A  Yes, I do.
Q Is kinetic energy by itself a force?
A Kinetic energy as a mathematical ‘formula is a certai:

mass traveling at a certain velocity.

As to "energy" against the word "force," Mr. Dubuc,

that is traveling and moving.

Q If you have a certain force, kinetic energy moving
at a certain force, and you disrupt or stop that movement

immediately or suddenly such as hitting an object, such as
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and the Flight Compartment of this airplane were approximately

- V!

hitting a mountain or something of that nature, would that
be called a terminal impact of the kinetic energy?

A It would be a good way to phrase it.

Q If you stopped that moving kinetic energy in a'

different manner so it is not a terminal impact, but so it

is an impact or severai impacts over time with a deceleration
as you have described in those pictures in your combutatiohs,
ié that a different quantum of kinetic énergy?

A It would be different in that the deceleration
would be quite different if you stop over a distance, differen
from like you are immediately locked against a mountain.

Q As £o the period or time in which the Kinetic
energy is dissipated in this series of picturesAyou have
shown us, does that differ insofar as the force operative

on an object such as an airplane or car or whatever it might

be?

A I don't think there really would be any differénte.
In stopping an automobile, you go through ghé same decelera-
tion‘and the same G forces on a human body, may be a‘differeﬁt

rnmagnitude than you would on an airplane.

Q 'You told us, I think, that the Troop Compartment

two stories above the street and you said that has some

importance,

What importance, if anything, does that have with
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respect to what you have been telling us about deceleration
forces?
A The importance of that two stories of structure

between the aft Troop Compartment and the crew deck and the

bottom of the tires on the airplane is that as the alrplane
‘made the second impact and as this kinetic energy was belng
dlSSlpated by the airplane dragging through the rite paddies,
the dragging through the rice paddy.eroded away the structure
and it tore off in chunks and this dissipated, burned up the
klnetlc energy and it dissipated it over a period of time

ang that is why this aft Troop Compartment traveled thls
2,000 or so feet.

During that period of 2,000 feet that there was
friction between the airplane and the ground, it was slowing
the airplane down and it was breaking off chunks of the
alumigﬁm structure.

Q You mentioned something about the structure folding
back during this period of time, the wing structure arcund
the Troop Compartment?

A Yes, the wreckage area shows some 850 feet from
the second impact that the aircraft structure had eroded away

' to the point where a big section of the cargo floor was left
lying there in the rice paddy about 850 feet from the dike.

When the floor eroded away and the side panels havi

no support, then they were dragging through the rice paddy an

)
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-jcs 1 eventually they just kind of folded up like wings and still
;E% _2 gave you a good friction force and stopping point.
Y 3 0 Based on the diagram and the computation and, as
((:: | 4 you have tola us, of the wearing away and dissipation of ‘
| 5 | -energy; baéed upon your calculations, wo&ld»the G forces be
6 different in different'parts of the airplane?
7 A The G force is a function of the velocit}, the
8 initial velocity, and then the distance it traveled. Certain |
9 '§ections of the airplane did travel different distances,
10 | therefore the average acceleration or deceleration wouldibg
11 different becéuse it traveled a different distance.

12 Q Would that be one of the reasons why yéur figures i
|
I 13 in the G forces in the Troop Compartment were far less than
, : i
Ezz 14 the figures in the Cargo Compartment?
) 15 ' A Yes,-that is the sole reason. It is strictly a
16 function of distance because the initial velocity was the
17 same in all cases.
18 MR, DUBUC: Thank you.
19 CROSS~-EXAMINATION
. 20 BY MR. LEWIS:
- .2‘ Q Sir, the formula you gave us for kinetic energy
-~ 22 which is the amount of kinetic energy existing at the time,
~ 23 both times the airplane hit the ground, the first and the

second time; was that the same? Is that correct?

25 A I don't recall that I gave you the complete formula,

rOVER REPORTING CO.. INC.

320 Masachusets Avenue, NL.E.
Washingion, D.C. 20002 A -
(202) 346-6666 ’ e
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the deceleration of the Troop Compartment, sir.

but the formula for kinetic speed is the same.

Q 7 It was 1.4547 X 10 to the 9th power which giveg you
a resu;t in foot pounds? o

A If.the speed is the same in both plaqes and rec6;ded
data indicates it was, or very close, and if the mass of the

iéirplane was the same, then it would be the same,
Q That comes out in foot pounds to 1,454,700,000 foot
pounds; doesn't it?

A I believe that is another way of saying 1.4547 X 10

to the 9th power.

Q You agree with me, I am correct?:
A That is correct, yes.
Q Now, when you did your calculations, sir, did you

take into consideration that the section that the babies were
in halted in a series of crashes as opposed to a smooth velocit:

Did you take that into consideration?

: My observation of the wreckage area --

Q Say fes or no. ﬂ

A No.,

Q Let me read to you the testimony of a Dr. Stark

who was in the Troop Compartment, and this is how he described

It is on page 2,101 of the transcript of this
proceeding, starting in the vicinity of line 5 and on. |

He said, after asking him to describe the impact/
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"There was an initial impact which was certainly hard, but.
the plane didn't explode or anything like that which is sort
of what I had anticipated might happen. Then following this

initial touchdown, then there was a series of crashes as thé'

‘Plane crashed across the landing area."

-

Now, if that'is a true statement, sir, that would
not be a constant velocity, would it? f

A I don't know what sensations the doctor was exper-
iencing, so I couldn't really comment on that.

Q Consider what he says here.. lle says, "Then follow-
ing this initial touchdown, then there was a‘'series of crashes
a series of crashes as the plane crashed across fhe landing
area. This took a matter of, I guess, a few seconds -- it
seemed much longer -- but finally the plane came to a complete
halt."

Justvanalyzing that statement, doesn't that seem
to say that the airplane, at least the part that he was in,
banked and then moved farther and banked again and moyed

farther and banked again? 1Isn't that what that seems to say?

MR. DUBUC: Objection. He should read that in the
. entire context.
THE COURT: You will have an opportunity on redirect

examination,

BY MR, LEWIS:

Q Isn't that what it seems to say?
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statement

SCENe ==
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then there would not be a constant velocity, would there?

A

statement

onsite before I could conclude what he really experienced.

Q

is true, then there was no constant velocity, was there?

I got an answer. '

€O ¢

~Counsel, taking that statement and analyzing that

in conjunction with what I actually saw on the

I am asking you, did you take into consideration --
THE COURT: You have asked that.

MR. LEWIS: I am sorry.

BY MR. LEWIS: | :

If this were true, if what Dr. Stark said were true,

I would have to say I would have to analyze this

in conjunction with other evidence, physical evidenc

If you were just taking what he says now, if that

MR. DUBUC: Objection.

TIIE COURT: That is sustained.

MR. LEWIS: I understand. My point is I don't feel

THE COURT: I don't want any comment, ~
MR. LEWIS: All right.

BY [R. LSWIS:

Who is Mr. Gregory?

Do you know a Mr. Gregory?

Yes,

Russell L. Gregory?
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Cromack Engineering Assoc., Inc.
P. 0. Box 28243
Tempe, Ar 85282

ATT: Mr. J. Robert Cromack, P.E.
SUBJ: Inspection of C-5A Aircraft at Kelly Air Force Base.

Dear Mr. Cromack:

It was a great pleasure to work with in June 19, 1980 in San
Antonio, Texas where we inspected a C-5A Aircraft and the parts
recovered from the Siagon crash April 4, 1975. Recent developments
make the determination of the forces required to dislodge or break
the seats in the troop compartment of vital importance to this case.
The judge may change his opinions and release the moneys from case
one and three if it can be shown that substantial force is required
to break these seats loose from the aircraft.

During the inspection of the existing aircraft you were taking the

most detailed notes of the seat construction, and probably are in

the best position to calculate these forces. My notes indicate that

a 3/8" bolt fastened the frame of the seat to a plate which connected
to the floor flanges. The flanges were held in position by four screws
which were assumed to be at least a number ten screw at maximum.

This aircraft was built with a 7075-T6 and 70738-T6 aluminum alloys
and have the following properties:

Aluminum Alloys

7075-T6 7079-T6H
Modulus of Elasticity in kips per
square inch, tension and compression 10,400 10,400
Modulus of Elasticity in kips per
square inch, Shear 3,900 3,900

The ultimate strengths and yield strengths depend on whether the alloy
is sheet or plate, extruded rods, bar or shapes, cold rolled rods or
bars, pipe, extruded tubing; the strengths also depend on the thick-
ness of the material or section. This data can be obtained out of the
Alcoa Structural Handbook and I have copied the appropriate pages and
enclosed:them for your information.

-contj
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The 7075-T6 and the 7079-T6 heat treated aluminum alloys are highly
sensitive to stress corrosion which is known to degrade the strength

of the high stress alloys. The C-5A aircraft has a serious defect in
the wing structure which has reduced the service life of this wing

from a.design of 30,000 hours to less than 9,000 hours because of the
fatigue cracking in the wings. The wings have been overhauled to give
only an additional 10,000 hours of 1life after a considerable expenditure
of funds on this modification.

The summary of the accident report, which you already have in your
possession, is about the best document which gives the events leading
up to this crash. The collateral report is almost identical to the
accident report and does not add anything to the events up to and
including the crash.

If I knew what additional data you require, I probably could locate
the document in which this data appears, if it is available. The best
description I can give you for the loading of the seat is as follows:
The orphans were loaded two to a seat with the heads of the orphans
Placed closest to the back of the seat, and were held in the seat by
a pillow placed over both babies and fastened in with the seat belt.
The children ranged in age from 6 to 20 months of age and were quite
small; a weight of 15 to 20 1bs. per baby would be quite high for
determining the loading in each seat.

I have enclosed a copy of the time-altitude data which has been collect-
ed from various sources: The first set of data is the first altitude-
time data given us by the Government which was ploted as altitude verus
time and G-forces in the vertical direction were calculated. The
summary of these sheets are enclosed for your information.

Madar data was furnished from the Air Force which gives the time,
altitude and mach number; all data with a star does not have a
corresponding data point from the Madar tape computer runout which
was furnished from Lockead. The last column gives the time intervals

in which the altitude and mach number correspond to the Lockheed Madar
tape data.

A Madar system is the abreviation for the malfunction automatic data

acquisition and recording system which is refered to as MDR in the
accident report or malfunction data record.

I am also furnishing you with a copy of the wreckage diagram along with
a copy of the April 18, 1980 letter Warren R. Lewis Jr. from Carol

E. Dubuce for your information and study. I have been unable to deter-
mine the accuracy of the Lockheed calculated data, nor do I have a key
for the recording of the SLRP (05) message on record 11977. This
letter does not explain any of this data but you may be able to derive
something from it.
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I am also enclosing a copy of Mr. Edwards April 28, 1980 calculations
for the average G-force on this aircraft. This information should get
you started in belng able to analyze and understand the testimony
which has been given so far.

Very tful§ §ous,

E L/) ‘ /g { u};ﬁ/

William Timm, P.E.
Consulting Engineer

WT:vh
Enclosures
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Minimum Mechanical Properties and Buckling Formula Constants’ )
EXTRUDED ROD, BAR AND SHAPES y

US=ultimate strength in kips per sq i, YS=yield strenth in kips per sq in,

See page 39 for explanation of “minimum pPropertics.

See puges 39 to 41 fur duetinitions, methods of deternmination und notes.

——

El=elongation in per cent 142 u. or 4 dia.
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ROLLED ANU COLD-FINISHED ROD AND BAR

US=ultimate streng

See page 39 for explanation of “mintruum’

th in kips per sq in.,

Alloy and Temper

Diamcter

ur
Thickness, In

Munmum Mcghumul Prop:ruea

2024-0 Up thru 8 000
2024-T4 Up thru o 500
3003-0 All
3003-H12 Up thru 0 374
3003-H14 Up thru 0 413
3003-H1e6 Up thru o 230
3003-H18 Up thru 0. 204
5052-0 All
5052-F 0.375 and over
6061-0 Up thru 8 ow
6061-T4 Up thru s 000
6061-T6 Up thru § 0w
7075-0 Up thru 8§ ow
7075~T6 Up thru 4 ow J
TABLE f
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Minimum Mechanical Properties and Buckling Formula Constants.

Tension phﬁ:xl
Us ‘x-'S—~ El YS’ ’
25 9 1o 9
02 40 14 +0
14 5 25 5
17 12 v 11
2 17 0] 15
24 K| 20
27 25 23
25 9.5 25 10
20 11 1t
10 5 18 5
S0 16 s 1o
42 i5 10 15
28 11 10 11
77 718 h [

US=ultimate strength in kips per sq o,
See pages 9

YS=yield strengih in kips per s 1.,
See puges 39 to 41 for definitions

pProperies,
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PIPE

See pitge 39 for ¢ aprhaation of ¢

Alloy and Temper

Size or
Thickness, In.
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3003-F Lin. and over
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0063-T832 All

o

Lo 41 for detinitions, mcethods of Jdeterinintion i
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Minimum Mechanical Properties and Buckling Formula Constunt;—Coududed

El=elongation in per cont in 2 iu or 4 di..
»wiethods of determingtion and notes,

Lokl b unuul (ux-:l.mls

C(unpruss&un
. V_‘I- t
910,087 | Tuwo
Ol0 4w ! 7
b O 015} 200
210 ust Fix
S 10 uxn? 1.4
S VAR Y 1t
S0 Tod | los
010 uks ! 1y
2luost | s
=
+]0uis o
Oto w2 |1,
310202 [#%]
1o
200N LN
Tluimw o
oo

L= clongation iupor cent 2 o,

Boan

Us

30
31
43
U

85
Su

40
063
St

e

b

)
20

N
AN

Ly

N U

)N

N

sles

Buckin.g b

Cubipre aloi

L { ¢
ooy 2o
300w | 1ss
300 Tt ' 103
U154 222,

)
310202 [
S U202 I 03
S100%6 ] s

SN SN
5,&) 02008
|

aalay

ul.

Shear
B r-JJ. \:T
0 017 m
0186 | 1w
0 oo | 241
(VYRR 4
U a3y | 147
O ool | .t
U 0o ]
0020 | .3
0.u23 |y
Ol |
O tH42 5,32
0. 94 52
U 023 WY
[VERRE (981
or 4 dia.
Thm
Shear
N
O v | il
O WY | o
0076 | 15
O W00 ‘il
0,094 22
[VRVIRY -2
; [VRTRTH ok
VNV rS Sl RTTEY
[V} ~2




YOI¥IWY 4O ANYdWOD WNNIwnly |

¥ Wt 1Y

Dl

TABLE |

4

Minimym Mechanical Properties and huckling Formula Constants
EXTRUDED TUBE

US=ultimate streny

Sec page 39 for explinition of
thiin kips per sq in., YS=yicld streug
See pages 39 to 41 for definitions, methods of deterni

thoiu Kips per sq i,

o _h;{lxxxlx;;x;x hi;::h:ulu—ly‘rupcrllta
Alioy and Temper 'I‘hlgk\:'n:'i, Iun. Tension II:L‘:‘:‘]‘(:II Shear
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Oren R. Lewis, Jr., Esgqg.
Lewis, Wilson, Lewis & Jones
2054 North l4th Street

Arlington, Virginia 22216

FFAC v. Lockheed Mircroaflt Corporation

Our file 2041-127€-23

Zimmerly v. Lockheed Aircraft Corporati

on

Our file 2041-1278-5R
Dear Oren:

Pursuant to plaintiffs'

—

Notice to Produce Physical

- NALD O'NEILL
WILL. ar . OUNRKERMA
A C LUNSEL

rlw CQHR OFFICE

One S TATL STHEECT PLAV A

HOA 1O A, 1. Y. 1006~
Tok 2:0) J4a-58G0C

CTALL MUTOR NEW YOk

e~ T EXD 222974
ue TL.EX D 620362
TSIl EXD 424674
v.u TEL.EXI 127683

©oaLL T FARTHER

Tt CAarOL. E. OUBUGC *

wh Qumsic

AL Fn B CALEY ®

L U0 . M CONNELL. gk ®

PALTINO TO 0.C. 8AR

Evidence at Trial and subpoena thereon and defendant's Motion

to Quash that subpoena and notice,
on Tuesday, April 15, 1980 to move
judge extended the subpoena through

we appeared before the Court
to quash that subpocna.
the end of this week and

Thee

asked that a report be given by Friday of this week on the

documents requested in the Notice to

With respect to those categories,
ruled in the negative denying requests
{8). As to the following categories
production:

(1)
pertaining to the crash scene and therefore
your request for production in the

Produce.

(6)

the judge has alrcady
as to categories
we make the following

ona

We hereby provide seven black-and-white slides not

they are not withir

surviving orphans cases.

These slides appear to have to do with the ramp portion and

ramp locking system of the aircraft and do

taken at the scene of the crash.

Nevertheless,
them available to you for your review in Cou

not appear
we are making
rt so that if you

to be



Oren R. Lewis, Jr., Esq. -2~ April 18, 1980

0y

wish copies made of them you should advise us and we will do
so.

-

(2) Lockheed has no such documents pertaining to
autopsies, dedth certificates, etc. except those produced Dby
the government.

(3) The Collateral Investigation was conducted colely Ly
the Air Force and Lockheed has no documents relating thercto
except the Collateral Report itself, which has previously bccn
produced to plaintiffs' counsel.

(4) Except for the document prepared by Lockeed with
respect to G-forces which has previously been listed as within
attorney work product and except as to G-forces information
contained in MADAR data already produced or produccd today and
John Edwards' formula for G-forccs as to which Mr. LEdwards wog
prepared to testify at trial but was not requested to do 30,
defendant knows of no other documecnts relating to G-forces

gencrated on or in C-5A 68-218.

(5) Defendant is maklng available to pleintiff a magncuac
tape copy of the MADAR tape from AF 68-218; a total "dumpout”
in octal form prepared at the request of trial counsecl last
week in light of plaintiffs' inquirics concerning MADAR data;
and eight pages of computation made by Lockheed from MADAR dita
on AF 68-218 on April 4, 19875 which wc may have alrcady given
to you. All other documentation in defendant's possssion witch
respect to MADAR on the april 4, 1975 AF 68-218 flight in 1¢s1€
herein has been produced to defendant's knowledge.

(7) Defendant is making available for inspection at our
offices or use in Court only a model of the C-5A ailrcraft and
the model of the C-5A used in the wind-tunnel test conducted DYy
Professor Harper as previously agreed in Court on April 15,
1980.

(9) Other than documents already produced, defendant
knows of no documents pertaining to

(a) the manner in which C-5A 68-218 broke apart
after the second impact on April 4, 1975 near Saigon, South
Vietnam;

(b) the nature of the forces and the expenditure of
energy associated with such break-up of C-5A 68-218;



Oren R. Lewis, Jr., LEsqg. -3- April 18, 1980

(c) the manner in which a C-5A would break up upon
crash landing; and .

(j) the nature of the forces in the expenditure cit
energy assocaatraed with the break-up of a C-5A upon a crash
landing.

As to categories (c) and (4) defendant knows oL no
Lockheed documents pertaining to same but is continuing 1ts
inquiry.

Sincerely yours,

,‘(/C//'////

C - N T VQ

Carroll E. Dubuc
Enclosures

cc: Honorable Louls F. Obherdorfer
James P. Piper, [Esqg.
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Analysis of 'G’ Levels Associated
With the C-5A Accident Near Saigon
April 4, 1975

by

co T James W. Turanbow, Ph.D,
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References Used:

The following analyses and conclusions are based in part, but are
not limited to, & review of the following documents: '

1. USAF Collateral Report, Vols, I, II, III,

2. Photographs of the aircraft prior to and following the
accident.

3. Photographs'of the accident site.
4. Miscellaneous drawings of the C—5A aircraft,
5. Sworn statements of:

Regina Aunne

Tilford Barp
Christine Lieverman
Keith Malone

Marcia Tate

6. Depositions and/or trial testimony of the following:

Regina Aune

Tilford Harp (co-pilot)
Christine Lieverman
Harriett Neill

Merritt Stark

Marcia Tate

Dennis Traynor (pilot)
William Timm

John Edwards

7. Wreckage Distribution Diagram,
8. Cutaway view of C—5A troop compartment,

9. NASA Technical Report SP-3006 ‘Bioastronantics Data Book,'
1964.

10, USAF Technical Report No. 5915 Part 2, 1961, 'Human Exposures
-ro to Linear Deceleration,’ 1951.



11. USAAMRDL Technical Report 71-22, 'Crash Survival Design
Guide,' 1971. '

-

12. Plots of the Data Obtained from the onboard recorder (MADAR).

13.° ¥he gsuthor also draws on some 20 years of experiesmce in
aircraft accident reconstruction and full scale crash testing
of aircraft, A vitae is attached for convenience of the
reader.



ACCIDENT SYNOPSIS

-~ The crash of this aircraft consisted of two ground contacts
separated by approximately 875 yards of free flight. The analysis of
the data available shows the following concerning these two contacts:

ContattNo. 1

This contact has been characterized by several of those aboard the
aircraft as 'a near normal touch down’ or 'no more than a hard landing
typical of military or commercial aircraft,' The sink rate was
reported to be 500 to 600 feet per minute by ome of the cockpit crew
(Mayor Traynor), a fact in agreement with: -

a) Extrapolation of the MADAR data.

b) The a2ircraft attitude and speed, i.e.,, nose up at touchdown,
(It is noted that the nose gear did not contact the ground at
this point), '

¢) The aircraft would have been in 'ground effect’ as it
approached the surface with resulting tendency to reduce any
existing sink rate.

d) Statements of other crew, for example: Capt, Harp said in the
Schneider Trial, page 2143, line 4: ‘I would say there were
bardly any G forces on the first landing,’

The primary structoral failure at this first contact was removal
of the rear sets of landing gears, probably due to the landing on a
less than normally firm ronway and to the above normal touchdown speed
of 270 knots, both of which conld be expected to increase the drag
forces on the gear.

Since the ultimate design load for each gear does not exceed
240,000 1bs, and assumption of full design load being developed on the
rearmost gears, plos a limit load of 160,000 1lbs on each of the
forward main gears, gives a total load of 800,000 1bs. This would
load the 450,000 1b aircraft to no more than 1.78g's along the
longitudinal axis of the aircraft, The vertical loads would have been
very consistent with those occuring for a landing at near or lower
than normal sink rate, Vibratory oscillations would have been induced
into the strocture due to failure of the gear, however these, being of
high frequency, would have been more of anm ‘audible’ nature to
passengers of the troop compartment rather than of a nature such as to
produce a displacement or impact type recsponse of those passengers,

No hazard to the occupants of either the cockpit or troop
compartments can thos be expected from this contact,

'S



Contact No. 2

This ground contact occurred after the aircraft became airbornme
fgilowing the initial touchdown and crossed the Saigon River.
Observation of the forward main gear tire marks relative to a small
dike pn.-the far bank of the river shows (together with the absemnce of
nose “géar marks) that the aircraft again touched down in level or
slightly @ose up attitude, The extended nose gear and extended main
gear permitted the aircraft to pass over this dike, allowing failure
of all of these remaining gears with little or no contact of the
bottom of the fuselage with the dike, The decelerations here would
again be no more than the values occurring in the first contact. Upon
passage over the dike the bottom of the aircraft began a skidding and
plowing run through wet and soft rice fields to the final points of
rest. Observation of the accident photos and other evidence shows the
following: : '

a) The troop cowmpartment and the crew compartments remained
essentially intact, maintaining living space for those
occupants, )

b) All seats remained attached to the floor and there were no
seat belt or harness failures,

c) Seats in the troop compartment are 16g seats attached to the
floor with a 9g restraint. All were rearward facing,

d) Skid tracks through the wet/soft marsh-like terrain are
strongly indicative of long-duration, low-level, constant
deceleration for the cockpit and troop compartments,

e) Break-up of the lower fuselage occurred in many relatively
small pieces consistent with many successive failures, again
indicative of continued and hence low level continuous
deceleration.

f) The failure of the side walls of the lower (cargo) compartment
ultimately resulted in the formation of two skids or runners
for the troop compartment which guided that compartment in
almost & straight track, reducing lateral loads to only those
of vibratory nature and allowing the floor to remain intact,

g) Adult occupants seated or kneeling on the floor between rows
of seats, without any kind of restraint other than holding by
hand were able to stay in place throughout the complete impact
sequence withont serious injury. Cuts and bruises were
reported, Only those occupants in line with an isle and
holding by hand appear to have been unable to retain position, :
These occupants would have been in a condition similar to a
‘free fall' at a somewhat elevated ‘g’ value of about 1.5 to
2.0g as they ‘fell’ longitudinally along the isle to impact at
or near the front bulkhead. Their injuries thus occurred in
this mode.



The 'VWreckage Diagram’ for C-5A SN 68-218 shows a2 deceleration
distance for the troop compartment of about 650 yards or 1950 feet as
scaled from the diagram, For an initial speed of 270 knots or 456
ft/sec the average deceleration over this distance is 1, 66g* In view
of the natunre of this accident it is the opinmion of the author that
the peak decelerations which occurred are probably not more than three
(3) t1mcs this valme or about 5g’s. The reader should observe
carefully the fact that such peaks cannot physically be applied for
sany appreciasble period of ‘time otherwise the aircraft would have to
stop in much less than 1950 feet. {The value would be 646 feet at
5g's constant deceleratjon].




HUMAN TOLERANCE TO DECELERATION

The voluntary tolerance of the whole human body for short duration
pulses with forward facing seat and shoulder harness is at least 40g's
or'ciih{ times the 5g value mentiomed above, For rearwvard facing
seats the voluntary tolerance level is well in excess of 40g. At
least one 80g test has been conducted on a voluntary human subject
without serioms injury.

The tolerance to head impact alone, as’'established by a Wayne
State University research group, indicates that peak accelerations of
15 milliseconds duration would have to be of the order of 140g just to
produce unconsciousness. For a 2ms pulse the corresponding value
would have to be about 400g.

It should be noted that in the C-5A accident in question many of
the children were not even awakened by the crash, In view of: 1) The
visually observed response of the c¢hildren in the troop compartment to
the crash (or the lack thereof) and 2) to the extremely large
disparity between the probable actual decelerations (both peak and
average values) and the limits of voluntary human tolerance to such
loads, it appears clear that no hazard to life or health existed due
the deceleration environment alome in the Saigon C-5A accident of
April 1975,

For the convenience of the reader, copies of several human
tolerance charts taken from reference No. 10 are included in the
appendix,



CONCLUSIONS

PRE—

It is the opinion of this anthor that it is a scientific certainty
that the decelerations occurring in the April 4, 1975 Saigon C-54

occupants or to those adult occupants who remained inp position
throughout the crash.



APPENDIX 1

For uniform (constant) deceleration the governing equation is:

6 = ——

where:

V = Velocity in ft/sec
= 270 knots = 456 ft/sec

S = Deceleration distance = 1950 feet

The constant 64.4 is twice thc acceleration due to gravity
or 2g =2 X 32.2 = 64.4 ft/sec’.

Then:

64.4 (1950)
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and average head decelerations as shown in Figure 5-7, In
combination, these limitationsg define 3 maximum velocity Curve
as a function of original material thickness, above which
absence of concussion (ag defined by the tolerance limit of

Figure 5-7) was doubtful, regardless of lmpact materiajl char-
acteristics. This curve is presented as Figure 5-8,

/- PEAK Accel e 2.4 Ave Acee .
—_[-AVERAGE ACCELERATION

G
O T
I 300 aiifing
= .
S
B :ZL&fIL}D'=' 'CD 6 Pr X
g 200 '
2 4
o .
T )
d H\L xJoz (486 A
<
sy 100 L WAYNE STATE UNIVERSITY DATA
= ! ! ] | !
&l | ] I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
. PULSE DURATION (71) - Msec
Figure 5-7, Head Tolerance to Impact as g Function
of Pulse Duration as Published by
;;;7 Wayne State University,

5.3.3.2 Heagq Impact Velocitiess Figure 5-9 shows typical
head velocities relative to the Seat as measured ©n anthropo~ . |
morphicvdummies, cadavers, and ljive human Subjects-in dynamiC
- Seat tests, Various combinations of OCcupant restraint were

used and are so indicated on each curve,

5.3.3.3 Geometry of Prokable Heagd Impact Surfaces in vU. S.
Army Aircraft: Alrcraft in the U. s. Army inventory in 1965
have been~examinegq to determine the kinds of contact hazards
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ACCELERATION - INTRODUCTION =~ -

Symbols and-vettars used in this
book are based on the direction a
body organ (e. g., the heart) would
be displaced by acceleration.
Table II below--and in particular
System 4, which is based on dis-
placement of body fluids--explains
the most commonly employed terms.

Source: Adapted from Gell [18].

Footward Negative G
(-2
N G
o
°\¢.‘ o N
Q-V
. S v Ry
Fo d Bockward pine G Prone G
o rwor (-1 WQ;. ; : G.
” ‘ A-P P-A
N Transverse € Tronsteue
A o .
29 R
o z
. (O
Voot . M
Heodword V' Positive G 5,
Q.
SYSTEM 1 SYSTEM 2 SYSTEM 3 SYSTEM 4
Table | Table O
Direction of Acceleration Inertial Resultant of Body Accelerstion
Aarcraft Acceleration Physiological Pnysiclogical Vernacular
Vector Descripuve Descripuve Displacement Descripuve
lanear Mouan (System 1} {System 2) {System 3) {System 4) {System 5)
Forward ey Forward accel. Transverse A-P G» OG' Eyeballs in
Supine G
Chest to back G
Backward -8y Backward accel. Transverse P-A G -Gy Eyeballs out
Prone G
Back to chest G
Upward -ay Headward accel. Posiuve G OG' Eyeballs down
Downward a, Footward accel. Negative G Gy Eyeballs up
({tariward) .
To right +ey R. lsteral aceel. Left lateral G oc’ Eyeballs left
(rightward)
To lef -y L. lateral accel. Right latersl G - -G’ Eyeballs right
{leftward) .
Angular Mouon
Roll right op - cartwheel Roll -R,
: ] .
Roll left -p cartwheel *R
Piteh up . 0! wlt -F
4 merss Puch ll, s
Pitch down -y somersauit OR,
Yaw right ot pirouette R,
Yaw .
Yaw lelt -t pirouetie -R,

® A-Pand P-A refer to Antrrior- Posterior and Postermor-Anterior.
Source: Adapted (rom Cell {18}



3-1. 'ACCELERATION - INTRODUCTION

The spectrum of acceleration environments is extremely large and may vary in duration,
magnitude, rate of onset and decline, and direction. Some acceleration exposures may be so
mild that they have relatively no physiological or psychophysiological effects, or they may be-
come so severe that they produce major disturbances. The emphasis of this section is primarily
on human petriérmance capabilities and physiological responses as they are modified by sustained
accelerdtion. "Abrupt accelerations and decelerations lasting less than two seconds are treated
in Section 5, Impact and Vibration.

The ‘unit for the physiological acceleration is G. as distinguished from the "true" dis-
placement acceleration, generally designated by aerodynamicists with the unit E. The physio-
logical acceleration represents the total reactive force divided by the body mass, and hence in-
cludes both displacement and resisted gravitational acceleration effects.

The physiological acceleration axes represent directions of the reactive displacements of
organs and tissues with respect to the skeleton. Please refer to the accompanying diagrams and
_ tables. The Z axis is down the spine, with +G, (unit vector) designations for accelerations caus-

ing the heart, etc., to displace downward (caudally). The X axis is front to back, with +G, des-
ignations for accelerations causing the heart to be displaced back toward the spine (dorsally).
The Y axis is right to left, with -"Gy designations for accelerations causing the heart to be dis-
placed to the left.

Angular accelerations which cause the heart to rotate (roll) to the left within the skeleton
are specified by the flx unit vector, representing radians/sec2 about the X axis. Angular ve-
locities in the same sense are specified by the +R, unit vector, representing radians/sec about
the X axis. Similarly, + represents an angular acceleration producing a pitch down of the
heart within the skeleton, and +l§z represents yaw right of the heart within the skeleton.

The field of acceleration research has produced a number of general principles concern-
ing the effects of acceleration stress on physiology and performance. The following statements,
many of which are illustrated in the charts of this section as shown, are hoped to be useful to
designers of aerospace vehicles and equipment.

1. Physiological tolerance, or the ability to withstand acceleration physiologically, is a
function of many variables--e, g.., rate of onset (3-2); direction of G vector (3-3); magnitude of
G (3-2); duration (3-4)--as well as the type of endpoints that are used as criteria, :

functioning of any particular physiological system during exposure to acceleration stress, there
are also performance tolerance limits, which define the end points for reliable functioning of any
particular performance ability.

3. Physiological and performance tolerances may be functionally related, but they need
not be the same, since each is dependent upon the criteria used.

4. During exposure to acceleration stress, the type of G-protection system used has a
very important influence on the'pilot's ability to tolerate acceleration (chart 3-5), perform tasks,
and maintain performance proficiency.

_ 5. For an écceleration of given rate of onset and magnitude, physiological tolerance is
highest for "'Gx' next for 'Gx' next for +G,, and lowest for -G,, directions of force. See 3-3.

6. Acceleration stress significantly impairs visual capabilities. As acceleration in-
Creases, visual acuity degreases (see 17-30), illumination requirements increase, and bright-
ness contrast requirements decrease (3-10 and 3-11), .

7. Major individual differences exist among pilots in their ability to perform piloting
tasks during exposure to high G.
8. Certain types of acceleration exposures produce illusions, or false perceptions, of

one's position and motion. Thege may occur in some pilots during or after the acceleration
exposure,
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3. ACCELERATION — INTRODUCTION, continved

9.-Since acceleration training results in physiological adaptation and conditioning to G,
as well as learning to make performance compensaiuons, accileration training produccs major
improvements in performance proficiency during exposure to high G.

10; THe ihstrument display characteristics of a piloting task influence the measurement
of performance capabilities of a pilot during exposure to high G. Among the more importantdis-—
play characteristics are: the pusliiun of the display instrument within the pilot's visual field, the
degree of interpretation required of the pilot, the number of instruments that must be viewed by
the pilot during high G, the amount of illumination, thc amount of bri chtness contrast, the phys-
ical form in which the ‘display. information is presented, and the amount of visual instrument
scanning that is required at high G. '

11. The characteristics of the control device used by the pilot in performing under G
have a significant effect upon proficiency. These characteristics are: the number of axes of
motion; the location of the axes of motion with respect to' the G and the pilot's hand; stick force
gradients along each mode of control; the centering characteristics along each mode of contro};
dead band zone; breakout force requirements; control friction; static and dynamic balance; damp-
ing characteristics; control throw; response time of control; control harmony; cross coupling
characteristics; size and shape of grip; dynamic and static balance; and control sensitivity(3-16).

12. Acceleration impairs the ability of the pilot to sense changes in control characteris-
tics that may occur as a function of specific acceleration vectors. This may be a direct effect
of the acceleration forces on the receptors, effects on the central or autonomic nervous system,
or an effect on circulatory and other physiological systems which indirectly affect the ability of
the pilot to sense changes in his arm, hand, and fingers.

13. Task characteristics that are relatively easy to perform in low-G environments be-
come more difficult as G increases.

14. Intellectual skills, piloting concentration, time perception, judgment, and immediate
memory are influenced by high G.

15. Response time, as well as complex psychomotor performance, is influenced by high
G (3-13). . : :

16. Anticipation of acceleration may produce emotional reactions that are greater in
terms of psychophysiological impairment than the direct effects of acceleration itself.

17. If, in addition to acceleration stress, the pilot is exposed to other environmental
stresses, his responses may be altered by the combined effects of these stresses. (See Section 9).

Positive (G;) and transverse (G,) accelerations have been emphasized in-studies to date,
while lateral and angular accelerations have received relatively litt?e attention, primarily be-
cause Of the lack of proper research facilities.

. Some limitations in interpreting acceleration research data are: (a) most studies have
been conducted on a small number of subjects; (b) repcated exposure to acceleration changes a-.
subject's G tolerance, and this factor is usually not included; (c) emotional condition and moti-
vation influence results; (d) instrumentation has not been standardized for measuring the effects
of G on physiology and performance.

Recommended for general reading are the following: Otto H. Gauer and George D, Zuidema,
Gravitational Stress in derospace Medicine [17]; Neal M. Burns, Randall M. Chambers, and
Edwin Hendler, Unusual” Environments and Human Behavior: Physiological and psychological
problems of man in space [5]; and C. C. Clark, J. D. Hardy, and R. J. Crosbic, A Pro;&sed
Physiological Acceleration Terminology with an Historical Review [12].
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This graph retates the onset rate
of acceleration to time-to-end-

point. It shows that for any given
positive acCeleration (G,) from 4
to 14 G, the time to grayout de-

pends on how rapidly the acceler-
ation level was reached. Further,
the table inset in the graph shows
the shortest times and the average
times for unconsciousness to de-

velop following grayout, eachpair

of values being related toan onset
rate. For example, at onset rate
of 4 G/ sec, the shortest time to
unconsciousness was 1.1 sec,
and the average 1.8 sec,

Source: Stoll [26].

This graph shows human tolerance
- to positive G, for varying rates
of onset, G amplitudes, and ex-
posure times.

Source: Adapted from Stoll [26].
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Figure a shows the greatest acceleration-time histories that have been tolerated on centrifuges
when special support structures and positioning are used. Solid lines show three curves which
define about the samc area of tGy times time. A heavy line ~~nnnet= tha npalig Af theas three
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-Gy accelerations {éyeballs out) when the sub)ec‘t is restrained in a special harness.

Sources: Bondurant et al. [4]);: Clarke et
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"ABRUPT TRANSVERSE DECELERATIONS. .
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These two graphs show the durations and magnitudes of abrupt transverse decelerations which
have been endured by various animals and man, showing areas of: voluntary endurance without
injury; moderate injury; and severe injury. Graph a summarizes -Gx data (back to chest accel-
eration) and b shows +Gy data (chest to back acceleration). Reference numbers on the graphs

are those in the original reports.

Source: Eiband [5]}.
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5-6. | ~ ABRUPT LONGITUDINAL DECELERATIONS :
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These two graphs show the durations and magnitudes of abrupt deceleration in the G (longitudi-
nal) directions which have been endured by various animals and man, showing areas of voluntary
endurance without injury, moderate injury, and severe injury marked by shading. Graph a
shows data of +G, acceleration (headward), and b shows data fcr -G, acceleration (tailward).

Reference numbers on the graphs are those in the original reports.

Source: Eiband [5].
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CROMACK ENGINEERING ASSOCIATES, INC.

Mailing Address: P. O. BOX 28243
o TEMPE, ARIZONA 85282
: - Area Code 602/831-7512

70 Willlam Tlmm

FROM Robert Cromack M .

SUBJECT C5A Case

Encloaed are the photographs whlch l took durlng our lnspectlon :'_-;':
o{ the C5A on June 19. 1980 o



TRAVEL ITINERARY

TO: ML & MMH

FROM: 'DLT ™

: TRAVEL ARRANGEMENTS FOR J. ROBERT CROMACK
TICKETS TO BE PRE-PAID ON 3/3/80

DEPART:

3/6/80 Phoenix, Arizona via American #366A (COACH)
1:15 P.M. Arrive St. Louis 4:56 P.M. (LUNCHEON FLIGHT)

DEPART:
3/6/80 St. Louis, Missouri via American #680 (COACH)
5:35 P.M. Arrive Washington National 8:35 P.M.
This is a Dinner Flight

DEPART:

3/8/80 Washington National via American #267 (COACH)
7:20 P.M. Arrive Chicago 8:30 P.M.

DEPART :

3/8/80 Chicago Airport via American #157 (FIRST CLASS)
9:20 P.M. Arrive Phoenix, Arizona 11:45 P.M.

HOTEL:
Marriott Key Bridge -9-essl ll-lot Lee Haﬁkm.(
Single Room; One Night )6/80 -b: RY "
Guaranteed Late Arrival - Mlchellecw.%.sz;‘ bk;;ﬁo' -8

Hyatt Rosslyn 4 ‘
Single Room; One Night 3/7/80 x?,':.s Wilsevn Boolevard
Guaranteed Late Arrival - Nancy A\-\.njwn I rginie
(nos PMi-G%S%

..

-

DEFTI EX. DD"

_'4 -‘ ' . : + DATE: L1O~27-§&/
: REPORTER: ALBERT J,

GASDO
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