

UNITED STATES DISTRICT COURT
FOR THE DISTRICT OF COLUMBIA

CARLY MICHELLE KURTH, also known as NGUYEN THI LAN, a minor who sues by and through her next friends and adoptive parents, RICHARD C. and MARGARET KURTH, 6428 Cranbrook NE, Albuquerque, New Mexico 87111; phone: (505) 821-2797; and by and through her guardian ad litem, CHARLES R. WORK and McDERMOTT, WILL & EMERY, Suite 500, 1850 K Street, N. W., Washington, D.C. 20006; phone: (202) 887-8030

New
Civil Action No.
80-3223

Plaintiff

v.

Old
Civil Action No.
76-0544-44

LOCKHEED AIRCRAFT CORPORATION

Defendant and
Third Party Plaintiff

v.

THE UNITED STATES OF AMERICA

Third Party Defendant

Deposition of:

DR. TA TAI NG

Wednesday, July 13, 1983

Washington, D. C.

ALBERT J. GASDOR
General Stenotype Reporting
(202) 546-6666 (301) 894-9157

Deposition of DR. TA LIANG was taken, pursuant to notice, before Albert J. Gasdor, a Notary Public in and for the District of Columbia, commencing at 10:10 a.m., Wednesday, July 13, 1983, in the law office of Finley, Kumble, Wagner, Heine, Underberg & Casey, 11th Floor, Bender Building, 1120 Connecticut Avenue, N.W., Washington, D. C.

APPEARANCES:

On behalf of the Plaintiff:

JOHN E. FRICKER, ESQ.
Lewis, Wilson, Lewis & Jones, Ltd.
2054 North 14th Street
Arlington, Virginia 22216
Phone: (703) 527-8800

On behalf of Defendant Lockheed:

JOHN J. CONNORS, ESQ.
THOMAS B. ALMY, ESQ.
Finley, Kumble, Wagner, Heine,
Underberg & Casey
11th Floor, Bender Building
1120 Connecticut Avenue, N.W.
Washington, D. C. 20036
Phone: (202) 857-4000

On behalf of the United States:

[Appearance waived.]

Biographical Summary of Ta Liang

Education

B.E. 1937, Tsing Hua University, China, M.C.E.
1948, Ph.D. 1952, Cornell University.

Professional Experience 1970 to date

Professor of Civil and Environmental Engineering, Cornell University, Ithaca, New York, teaching courses and directing research in Airphoto Interpretation, Remote Sensing, and Physical Environment Evaluation.

Principal Investigator, NASA-sponsored Remote Sensing Program, Cornell University, 1972-date.

Co-investigator, Puerto Rico Natural Resources Inventory Project, Cornell University, 1971-73.

Visiting Professor, Colorado School of Mines, Golden, Colorado. Co-investigator, Colorado Natural Resources Inventory Project, 1970.

Consultant to national and international governmental and industrial organizations in the use of airphoto and remote sensing methods in national inventory and planning, location for power plants, superport, Arctic gas line, transportation routes, and other engineering, agricultural and land development projects in the United States, Canada, Puerto Rico, Barbados, Chile, southeast, south and southwest Asia, China, and west Africa.

1963-1970

Professor of Civil Engineering, Cornell University.

Visiting Professor, Cornell Aeronautical Laboratory, Buffalo, N.Y., 1966-67.

Visiting Lecturer, Graduate School of Planning, University of Puerto Rico, 1965-66.

Director, Tropical Soils Airphoto Research Project, Cornell University (sponsored by the Air Force Cambridge Research Laboratories) 1961-65.

Consultant to governments and industries in engineering and airphoto projects, in the U.S., Canada, Caribbean area, Central and South America, the Middle East, Southeast Asia, North, West, East, and Central Africa and Western Australia.

1957-1963

Associate Professor of Civil Engineering, Cornell University.

Consultant in engineering and airphoto projects in various parts of U.S. and abroad.

Chairman, Photographic Interpretation Committee, American Society of Photogrammetry, 1960-61.

DD-2741 Ta
Date 7/13/85
Rptr C. J. Faske

1955-1957

Senior Soils and Foundation Engineer, Tippetts-Abbett-McCarthy-Stratton, New York.

Airphoto and field investigation of soils, foundations and construction material sources in projects of dams, highways, railroads, airfields, and ports, in various parts of U.S. and abroad.

Lecturer in Engineering Interpretation of Aerial Photography, City College of New York, 1957.

1954-1955

Field Director and Visiting Associate Professor, Cornell University Airphoto Team in Burma, sponsored by the U.S. State Department Foreign Operations Administration. The team was composed of experts in the fields of engineering, geology, agriculture, forestry, and city planning to train Burmese government officials.

1950-1954

Research Associate in Civil Engineering, Cornell University, conducted research projects sponsored by U.S. Navy, U.S. Army, and C.A.A. in the fields of soils and aerial photography. Did field work in the United States, Canada, Pacific area, and the Philippines.

1946-1950

Research and graduate work at Cornell University in Airphoto Interpretation, Soils Engineering, Engineering Geology, and Transportation Engineering.

1942-1945

Senior Engineer, U.S. Armed Forces in China-Burma-India Theater. Supervision of design and construction of roads, airports, and housing facilities. Awarded U.S. War Department Meritorious Civilian Service Emblem, 1945.

1937-1942

Highways and railroads survey, design, and construction, China and Burma.

PUBLICATIONS
AND REPORTS

Analysis of Landfills with Historic Airphotos (co-author) ASCE/ASP Specialty Conference on Civil Engineering Applications of Remote Sensing. American Society of Civil Engineers, New York, N.Y. 1980.

Airphoto Interpretation for Engineering Applications, Historical Perspective and Future Evaluation: V. Tropical Regions, invited paper, American Society of Photogrammetry symposium, Washington, D.C. 1979.

Landslides: Analysis and Control, Recognition and Identification Chapter (co-author), Transportation Research Board, National Academy of Sciences, Washington, D.C. 1978.

PUBLICATIONS
AND REPORTS
(continued)

The use of Airphoto Interpretation and Remote Sensing in Soil Resources Inventories (co-author), invited paper, Soil Resources Inventory Workshop, Cornell Agricultural and Life Sciences College, sponsored by the U.S. Agency for International Development, Ithaca, N.Y. 1977.

Image Interpretation (contributing author), Chapter in Manual of Remote Sensing, American Society of Photogrammetry, Washington, D.C. 1975.

Airphoto Analysis in the Tropics: Crop Identification (co-author), Proceedings, Tenth Symposium on International Remote Sensing of Environment, Ann Arbor, Michigan, 1975.

Land Inventory Systems - The Cornell Experience (co-author), invited paper in International Symposium on Aerial Inventory of Natural Resources, Mexico City, Mexico, 1973.

Remote Sensing of the Physical Environment, invited paper, American Society of Photogrammetry national symposium, Washington, D.C. 1972.

Forest Environments in Tropical Life Zones (co-author), Pergamon Press Inc., Oxford and New York, 1971.

Airphoto Interpretation of Engineering Soil in Tropical Environments, Proceedings, Third Symposium on Remote Sensing of Environment, Ann Arbor, Michigan, 1965.

Application of Airphoto Interpretation in Route Location (co-author), International Archives of Photogrammetry Vol. XIV, Delft, The Netherlands, 1963.

A critical Review of Engineering Uses of Airphotos in the Quebec Cartier Mining Railway Project, Canada (co-author), presented at the Semi-Annual National Meeting, American Society of Photogrammetry, New York, 1961.

Landslides and Engineering Practice (co-author of Airphoto Interpretation Chapter), Highway Research Board, National Academy of Sciences, 1958.

Technical Project Reports on national airphoto and remote sensing program; soil survey; railroad, highway, and pipeline route location; site evaluation; construction material search; and landslide investigation, in various parts of the world, 1955 to date.

Research Project Reports on: Remote Sensing Program, NASA, 1972-80; Natural Resources Inventory, Puerto Rico (co-author), 1973; Natural Resources Inventory, Colorado (co-author), 1971; Tropical Soils Airphoto Research, U.S. Air Force, 1964; Airphoto Interpretation, Burma, U.S. FOA, 1955; Long-Range Photography Research, U.S. Army, 1954; Soil Moisture and Density Research, CAA, 1952; Key to Aerial Photographic Determination of Ground Conditions, Landform Series, Six Volumes (co-author), U.S. Office of Naval Research, 1951.

TA LIANG
CONSULTANT
2 TRIPHAMMER LANE, ITHACA, NEW YORK 14850

PHONES: 607 256-5074
607 257-0484

April 26, 1982

Charles R. Work, Esquire
Peabody, Lambert & Meyers
1150 Connecticut Avenue, N.W., 12th Floor
Washington, D. C. 20036

Dear Mr. Work:

I have had the opportunity to review the deposition and trial testimony of Mr. Atkins, the computer-enhanced photographs he created and relied upon, the report of Dr. Welch, the photographs he relied upon, and two motion pictures (Tarbell-1 and 75 CRK-DC-2184). I have also reviewed the report of Dr. Morain and the photographs he relied upon.

I was asked to review these materials and determine the significance, if any, of computer enhancement and stereoscopic analysis by Mr. Atkins and Dr. Welch respectively to the issue of the lengths of the tracks of the troop compartment and the existence of a ground rise at the forward end of the troop compartment, at the point of last impact.

Upon review of these materials, and upon consideration of the task before me, I have an opinion regarding the use of the technologies employed by Mr. Atkins and Dr. Welch.

1. Regarding the use of computer enhancement techniques as employed by Mr. Atkins, I have the following opinion: Computer enhancement, an increasingly used technique, has not produced significantly different results in this case. The generally agreed-to continuous track by the troop compartment is clear in all original photographs. The cause of discontinuous "track" or disturbance is subject to debate and has not been enhanced convincingly. The use of computer enhancement, meanwhile, has its limitations and should be used with caution. In digitizing the original photographs (in contrast to the original data being digital), one always loses some information ("one generation away"). Furthermore, in computer manipulation, one may inadvertently overlook details in the photographs that might provide useful information. For practical purposes, given the quality of the original photo prints, the improvement, if any, of measurements by "pixels" is negligible.

2. Regarding the use of stereoscopic analysis by Dr. Welch, I have the following opinion: An attempt to create some stereo view for topography is always commendable. However, it could be misleading or even erroneous for visual analysis, particularly in not-rugged terrain, when the position and attitude of the camera for each photo is unknown. Thus, a small rise of the topography in front of the final resting place of the troop compartment, as suggested by Dr. Morain, (the evidence provided by several ground and air oblique photos is rather convincing) could possibly

TA
2743 Liang
Date 7/13/83
Rptr 2
DD-
Date 7/13/83
Rptr 2

be missed with the proposed "stereo" by Dr. Welch. In other words, without properly created stereo models, the terrain condition suggested by Dr. Morain cannot be disproved. Rigorous analytical solution in stereo would require such information as camera focal length, tangential distortion, and the like.

Altogether, the use of computer enhancement and stereoscopic analysis as employed by Mr. Atkins and Dr. Welch does nothing more to answer the issue of the length of the tracks, the severity of the impact, or the non-existence of a ground rise than do more standard methods. Further, their approaches could be misleading and confusing to the layman.

Finally, upon review of these materials, I find nothing to contradict the conclusions reached by Dr. Morain in his report. I believe there is sound photographic evidence upon which to base Dr. Morain's opinion regarding the impact of the troop compartment with the ground, and I concur with his findings.

Very truly yours,

Ta Liang
Consultant

1 MR. CONNORS: John, the usual stipulations, and

2 I assume you do not waive signing?

3 MR. FRICKER: I do not waive signing, and let me
4 make sure I understand what you are talking about.

5 All objections are preserved except as to the form
6 of questions. That is stipulated.

7 There was a third stipulation which, long ago and
8 far away, was the presence of the Government would be waived.

9 Is that one you are suggesting?

10 MR. CONNORS: Yes.

11 Whereupon,

12 DR. TA LIANG

13 was called as a witness and, having been first duly sworn,
14 was examined and testified as follows:

15 DIRECT EXAMINATION

16 BY MR. CONNORS:

17 Q Would you state your name, please.

18 A My name is Ta Liang.

19 Q What is your home address?

20 A [REDACTED]

21 Q Your office address?

22 A 453 Hollister Hall, Cornell University.

1 Q Is it Doctor Liang?

2 A Yes.

3 Q Doctor, I would like to show you a document of
4 three pages which we will mark as Defendant's Exhibit DD-2741
5 and I will ask you if you can identify that.

6 A Yes.

7 [Biographical Summary of Ta Liang was
8 marked DD-2741 for identification.]

9 BY MR. CONNORS:

10 Q What is this document?

11 A It is a biographical summary.

12 Q Is this document which is dated August, 1980 your
13 current curriculum vitae?

14 A Essentially, yes.

15 Q Are there any changes?

16 A Essentially what is there stands.

17 Q Would a change be additional publications?

18 A I think it is fine.

19 Q Doctor, have you ever been in military service?

20 A Not directly. I was a civilian engineer for the
21 U. S. Army during World War II, but that is not strictly
22 military.

1 Q You have never been in the uniformed services?

2 A No.

3 Q Have you ever done any photogrammetric or photo
4 interpretation work for the military?

5 A Yes.

6 Q What was that?

7 A I think if you will refer to my biographical sum-
8 mary, during 1946 to 1950, I did work for a research project
9 for the Office of Naval Operations, and then in 1960 -- maybe
10 the last paragraph of my summary would reflect these facts --
11 Director, Tropical Soils Airphoto Research Project for the
12 U. S. Air Force, 1961 to 1965, and then long-range photo-
13 graphic search, U. S. Army, 1954; and then the Key to Aerial
14 Photographic Determination of Ground Conditions for the
15 Office of Naval Research, 1951.

16 Those are mainly the ones related to the military.

17 Q Have you done any photogrammetric or photo inter-
18 pretation work for the military which is not reflected in
19 your curriculum vitae, DD-2741?

20 A I don't think so.

21 Q Have you any training or experience in the design
22 or operation of aircraft?

1 A No.

2 Q If I use the term "trafficability analysis," do
3 you understand what I am talking about?

4 A Yes.

5 Q Would you define for the record what a traffic-
6 ability analysis is.

7 A In my area in particular, it is the study of the
8 ability to travel primarily by vehicles but sometimes by
9 foot soldiers.

10 Q Have you personally done such analyses?

11 A Some.

12 Q Dr. Liang, what methods are used in such traffic-
13 ability analyses?

14 MR. FRICKER: I will object on possible vagueness
15 grounds. You are asking what are used today? You have not
16 identified when he performed these analyses.

17 MR. CONNORS: My question related to whether he
18 understood the term, and I will take whatever are the stand-
19 ard methods used in such analyses.

20 THE WITNESS: Beach trafficability for the Navy.

21 BY MR. CONNORS:

22 Q Dr. Liang, what methods would a photo interpreter

1 or photogrammetrist use in making such analyses?

2 A By using air photos plus ground verification,

3 ground operations.

4 Q How would the air photographs be used? What tech-

5 niques would be employed in interpreting the air photographs?

6 A In trafficability?

7 Q Yes.

8 A There are many visual methods.

9 Q Do you ever do your own photo reconnaissance?

10 A Could you clarify what you mean?

11 Q Do you ever take your own pictures of the areas
12 you are going to analyze?

13 A Occasionally I take pictures, but normally I rely
14 on professional photographers.

15 Q Have you ever done your own aerial photographic
16 reconnaissance?

17 A Taking aerial photography?

18 Q Yes, taking your own aerial photographs from the
19 air.

20 A No, only in sort of a supplementary way.

21 Q You said you use commercial photographers to take
22 your photographs?

1 A Yes.

2 Q What instructions do you usually give those photog-
3 raphers when they are assigned to do a project for you?

4 A This is a general question, but I try to sum it
5 up in a way, telling the scale, the flying height, the focal
6 length of the camera; if possible, the time of the year,
7 the time of day.

8 Q Do you have any particular commercial photographers
9 which you use for such photography?

10 A Not consistently. I probably deal with quite a
11 few air photo companies.

12 Q What would be an example of an air photo company
13 you might use on a project for the survey of a gas pipeline,
14 which I believe you have done?

15 A Makhurd Aerial Survey is one major company, and
16 Aero Surface used to do a lot in past years. Aero Surface
17 has changed their name several times now. I don't know what
18 their present name is. Also, there is a British company
19 overseas.

20 Q What is your current employment?

21 A I am a professor at Cornell University.

22 Q What photogrammetric or photo interpretation project

1 are you currently involved in?

2 A Do you mean inside the university or outside?

3 Q Anywhere.

4 A I just returned from China two weeks ago where
5 I spent time discussing with the Ministry of Railroads how
6 to use air photos and remote sensing in the construction
7 of new lines in Western China.

8 We did generally air photo projects for NASA for
9 trying to expand the use of remote sensing in New York State
10 in particular and the northeast in general. This has been
11 going on for more than ten years, and now it has come to
12 some conclusion, and it is phasing out; and, in that work,
13 we primarily use air photos.

14 Also, I do consultations for the government, inter-
15 national agencies, and the like.

16 Q What type of projects are you doing for either
17 NASA or these other government agencies that you are re-
18 ferring to?

19 A Mostly in connection with using air photos, remote
20 sensing devices for engineering and agriculture.

21 Q What sort of engineering projects?

22 A Railroad locations, gasoline location, pipeline

1 location, soil, geologic evaluations.

2 Q Would these be studies of large tracts of land
3 to determine the various paths of the proposed railroad or
4 pipeline, and that sort of thing?

5 A We primarily study the geologic conditions, where
6 they might have landslide problems, major geologic problems.

7 Q What are you doing for the university now?

8 A I teach courses in photo analysis.

9 Q How many courses are you currently teaching?

10 MR. FRICKER: Do you mean currently the summer
11 session?

12 BY MR. CONNORS:

13 Q Let's take the last academic year.

14 A In the fall term, I taught what is called image
15 analysis, and then, besides, I direct student theses, and
16 things like that.

17 This coming fall semester, I will be teaching the
18 same course and, in addition, Image Analysis 2 which is a
19 follow-up course.

20 Q What textbooks are used in those courses?

21 A I do not use fixed textbooks. I use notes, pub-
22 lications by me and by others, so there is no text, so to

1 speak, but there are some references.

2 Q Could you give us some examples of standard text-
3 books in the field of photo analysis?

4 A There is a Manual for Photo Interpretation published
5 by the American Society of Photogrammetry which is old but
6 is still a pretty good reference. It was published in 1960,
7 and then there is a manual Remote Sensing published by the
8 same American Society of Photogrammetry, published in 1957.

9 It is a very good general reference which is being revised,
10 and the Second Edition is supposed to come out next month.

11 Q Doctor, periodically during the deposition I may
12 ask you for a definition. I do not intend by that to either
13 confine you or to invite you to give a lecture on a particu-
14 lar subject but, rather, to give us some reference which
15 the layman reading this text can use. If at any time after
16 you have defined something you feel you have to supplement
17 it because of another issue we have gotten into, please feel
18 free to do so.

19 Doctor, could you define for us the term remote
20 sensing?

21 A In the broader sense, remote sensing means contact.
22 You are sensing me; I am sensing you; non-contact sensing.

1 Traditionally, we start with air photos. In recent
2 years, it expanded into using platforms by satellite and
3 by high-level flying aircraft.

4 So, in the broad sense, remote sensing included
5 air photos. Sometimes in a narrow sense in the professional
6 groups, they tend to limit remote sensing to a more recent
7 development like satellite use, and things like that.

8 So, generally, I would say remote sensing covers
9 the whole range of efforts, the methods of data collection.
10 I would consider air photos as part of remote sensing.

11 Q You mentioned photographs as an example, but re-
12 mote sensing is not confined to just the visual spectrum,
13 is it?

14 A Right.

15 Q It can be any type of remote sensing?

16 A Non-contact.

17 Q What areas are subject to remote sensing analysis?

18 MR. FRICKER: Geographical areas?

19 BY MR. CONNORS:

20 Q Subject areas, military, agricultural, military-
21 industrial?

22 A I would say it is an almost unlimited situation.

1 Q Remote sensing is a rather broad area, is it not?

2 A Yes.

3 Q What is your particular area of experience in
4 training within the remote sensing field?

5 A I start off as an engineer, so my basic training
6 is in geology, engineering, soils; sensing is used to de-
7 termine those conditions. As you just mentioned, remote
8 sensing is sort of a multidisciplinary area. I am gradually
9 getting educated by all these different professional people
10 and, in particular, the agriculture people which I have a
11 lot to do with.

12 Q Have you ever been to Viet Nam?

13 A Yes.

14 Q When was that?

15 A The last time, I believe, was 1962 or 1963. This
16 was in connection with the tropical soil research for the
17 Air Force.

18 Q How many times did you visit Viet Nam?

19 A Professionally, only once, only that time, but
20 I passed through that area before.

21 Q On what occasion was that?

22 A Just traveling, passing through.

1 Q You didn't stay and visit?

2 A No; but in 1962, I believe, I did this tropical
3 soils study for the Air Force. That is on the last page
4 in the last paragraph of my summary, and then on the first
5 page, 1963 to 1970, Director, Tropical Soils Airphoto Re-
6 search Project for the Air Force, Cambridge Research Lab.

7 Q So, you were involved with photo interpretation
8 with regard to Viet Nam?

9 A Yes.

10 Q That related to soil survey only?

11 A It related to the characteristics and subtropical
12 soil.

13 Q During that particular visit or any visit to Viet
14 Nam, did you ever have occasion to visit what we now know
15 to be the site of the C5A accident?

16 A No.

17 Q What part of Viet Nam was that study involved with?

18 A It is still in the so-called Delta area near Saigon.
19 At that time, travel was quite limited, so it is not possible
20 to go into many of the areas that we would like to go to.

21 Q Have you any training or experience in aircraft
22 accident investigations?

1 A No.

2 Q Have you any training or experience in aircraft
3 accident reconstruction from photographs?

4 A No.

5 Q Have you had any training or experience in the
6 identification of aircraft or aircraft parts from photo-
7 graphs?

8 A Not specifically.

9 Q Do you regard yourself as an expert in aircraft
10 identification?

11 MR. FRICKER: Do you mean being able to look up
12 and say that is a B-52?

13 BY MR. CONNORS:

14 Q Do you regard yourself as an expert in aircraft
15 identification from an aircraft?

16 A If I wanted to be modest, I would say no. If I
17 wanted to extend myself a little bit, I would say we train
18 people from CIA and others in schools, but I cannot go much
19 further.

20 Q You train them in the techniques but not in the
21 specifics of aircraft identification; is that correct?

22 A I would rather not answer, if I may.

1 Q Do you have a problem with classification?

2 A Yes.

3 Q Do you regard yourself as an expert in aircraft
4 accident reconstruction from photographs?

5 A No.

6 Q Have you ever testified under oath before, either
7 at a deposition or at trial?

8 A I think I did, but I am not 100 percent sure. It
9 was many years ago that I did testify about landslide prob-
10 lems in Pittsburgh, but it is so long ago I must say most
11 probably, I did, but that was such a long time ago.

12 Q Have you ever prepared any reports or advised any
13 lawyers regarding photo interpretation matters other than
14 in this lawsuit?

15 A I must say that I do not know because, in my con-
16 sulting practice, I have prepared reports. How many of them
17 eventually end up in the courtroom or the legal offices,
18 I really do not know. But directly with a law firm, I don't
19 recall.

20 For instance, right now, I have a couple of things
21 going on that I am sure will end up in court, but I can't
22 say this directly.

1 I do not know if I mentioned in here, most of the
2 time I work for the engineering companies. I think most of
3 those reports eventually go to court.

4 Q Have you ever been asked by attorneys to prepare
5 any reports for them or to provide them any advice with re-
6 gard to the interpretation of photographs?

7 A To my recollection, no.

8 Q Prior to your involvement in this lawsuit, had
9 you ever met or known Dr. Stanley Morain?

10 A Yes, I have known him professionally for quite
11 some time.

12 Q What sort of professional contact did you have
13 with him?

14 A We are members of the American Society of Photo-
15 grammetry. He also worked with me on a project for the State
16 Department, AID.

17 Q Do you have a personal relationship with Dr. Morain?

18 A In what way?

19 Q Personal way, beyond your professional relation-
20 ship.

21 A Friends. If you mean as a friend, yes, as a pro-
22 fessional friend.

1 Q Prior to your involvement in this litigation, had

2 you ever met or known Dr. Robin Welch?

3 A I have heard of his name, but I do not know any-
4 thing specific.

5 Indeed, the other day I was looking at a chapter
6 article I wrote and found we are officers of the same chapter.
7 This professional circle is rather small. You generally know
8 people by name.

9 Q Prior to your involvement in this litigation, had
10 you ever met or known Mr. Arlen Atkins?

11 A No.

12 Q Prior to your involvement in this litigation, have
13 you ever had occasional to use the services of the Itek Cor-
14 poration?

15 A No, I don't think so.

16 Q Are you familiar with the Itek Corporation?

17 A By reputation, yes.

18 Q What is their reputation in the field?

19 A They have done a lot of optical work for the mili-
20 tary.

21 Q Are they respected in the area?

22 A Yes.

1 Q Are you familiar generally with the reputation
2 of Dr. Morain in the area of photogrammetry or photo inter-
3 pretation?

4 A Yes.

5 Q He is not regarded as an expert in aircraft acci-
6 dent reconstruction, is he?

7 A He has a general reputation as a photo interpreter,
8 but for aircraft, no, I don't think so.

9 Q His general area of expertise relates to agricul-
10 ture, is that right, and agricultural studies?

11 A I believe it is in geography and agriculture.

12 Q Are you familiar with the general reputation of
13 Dr. Robin Welch in the area of photogrammetry or photo in-
14 terpretation?

15 A Only in a very general sense.

16 Q Doctor, the next series of question will relate
17 to your contact with this litigation. If I ask for informa-
18 tion you have provided, so John understands, he will tell
19 you this any way, I do not want any trial strategy or any-
20 thing like that. What I will be asking for will be mostly
21 factual information.

22 When were you first contacted with regard to the

1 litigation arising out of the C5A accident on April 4, 1975?

2 A I don't think I have a record of that, but I think
3 it must be early April, sometime early in 1982.

4 Q Who was it who contacted you?

5 A I believe it was Dr. Cohen.

6 Q How did he contact you?

7 A I think it was either Dr. Cohen or someone in the
8 firm that called me and asked me if I cared to come to Wash-
9 ington and review some of the materials pertinent to this
10 case.

11 Q At the time of that first contact, what factual
12 information were you given regarding the accident itself?

13 MR. FRICKER: Do you mean if it was, in fact, by
14 a telephone call, what he was told over the phone?

15 MR. CONNORS: That is correct.

16 THE DEPONENT: It is really hard to recall. I was
17 given a brief description of the accident and asked if I
18 could come to review materials. I don't think until I came
19 to Washington I really knew the case. This is my recollection.

20 BY MR. CONNORS:

21 Q Was that your next contact with regard to this
22 litigation when you came to Washington?

1 A Yes.

2 Q When was that?

3 A I would have to go back to my report. This must
4 be around April 26th or shortly before then. I remember I
5 spent just a short time in the office going over the material
6 and this was in late April.

7 Q At that time, what were you told about the acci-
8 dent? That was April of 1982; is that correct?

9 A 1982.

10 Q At that time, what facts were you told about the
11 accident?

12 A I was told about the tragedy, of the failure of
13 the aircraft, and that many children were killed, and the
14 children who survived had health problems. And then there
15 are movies there and photos there and Morain's report, the
16 Welch report, and I can report that I was asked to review
17 the material, give an opinion, in particular, related to
18 the Atkins report and Welch report, and they asked me if
19 I had any opinions.

20 Q What were you show at that time in terms of mater-
21 ial related to the accident or this litigation?

22 A The movies, the reports, the photographs.

1 Q What photographs were you shown?

2 A I do not have a complete list, but it was all the
3 materials that were mentioned in the reports that were given
4 to me as well as the movies.

5 Q I understand that the only photos you were shown
6 at that time were the ones that were mentioned in the re-
7 ports of the other three experts; is that correct?

8 A Yes.

9 Q In addition to the movies and photographs, were
10 you shown any other materials?

11 A I don't think so.

12 Q At that time, were you shown the reports?

13 A Yes.

14 Q Whose reports were you shown?

15 A The Morain report, Welch report, and Atkins' re-
16 port.

17 Q Were you shown any trial or deposition testimony?

18 A I believe there was one deposition. I think I saw
19 the deposition testimony and trial testimony of Atkins and
20 the report of Dr. Welch.

21 Q You have been referring to a document which is
22 in front of you. I would like to show you a two-page document

1 apparently on your letterhead which we will mark as Defendant-
2 ant's Exhibit DD-2743 and ask if that is the document you
3 have been referring to?

4 A Yes.

5 [Letter from Ta Liang to Charles R. Work,

6 April 26, 1982 was marked Defendant's

7 Exhibit DD-2743 for identification.]

8 BY MR. CONNORS:

9 Q What is that document?

10 A That is my report to the law office.

11 Q This document which you say is your report to the
12 law offices is dated April 26, 1982; is that correct?

13 A Yes.

14 Q Does this report list all of the materials you
15 reviewed for the preparation of this report?

16 A Yes.

17 Q How long were you in Washington in April of 1982
18 for purposes of this litigation?

19 A One day.

20 Q Did you review the materials referred to in your
21 report during that day?

22 A Yes.

1 Q Did you prepare the report at that time?

2 A At the end of the day, yes. I believe I drafted
3 the report, and then finally I went back and sent this back.
4 I don't remember if I sent it back from Ithaca.

5 Q Did you show the draft to anyone?

6 A Yes.

7 Q Did you receive any comments regarding the draft?

8 A No.

9 Q Does your final report reflect the draft which
10 you prepared at that time?

11 A Yes.

12 Q Were there any substantial changes between the
13 draft and the final report?

14 A No.

15 Q Who did you speak to while you were in Washington
16 for that visit?

17 A Dr. Cohen.

18 Q Anyone else?

19 A Could I check with Mr. Fricker about the person's
20 name?

21 MR. FRICKER: Do you have any objection?

22 MR. CONNORS: No.

1 [Deponent confers with counsel.]

2 MR. FRICKER: I don't know who he is referring
3 to.

4 BY MR. CONNORS:

5 Q Peter Butt?

6 A Yes.

7 Q Doctor, did you prepare or take any notes in con-
8 nection with the preparation of your report?

9 A Do you mean in the office?

10 Q At any time.

11 A Could you ask your question again, please?

12 Q Did you make any notes at all with regard to your
13 involvement in this litigation?

14 MR. FRICKER: That is a different question. That
15 is much broader.

16 MR. CONNORS: Let's go with the broader question.

17 MR. FRICKER: You are asking up to today whether
18 he has made any notes?

19 THE DEPONENT: I think so, yes. Usually when I
20 look at things, I jot down a few notes.

21 BY MR. CONNORS:

22 Q Do those notes still exist?

1 A I would have to check. I am not sure. Usually when
2 I write a final report, I usually either destroy the notes,
3 or sometimes I might file them away, but I don't know for
4 sure.

5 Q Did you keep a copy of the draft report which pre-
6 ceded the final version we have seen here today?

7 A I do not know. I could check.

8 MR. CONNORS: We will call for the production of
9 any notes or drafts of this report.

10 BY MR. CONNORS:

11 Q What precisely did you understand your capacity
12 to be with regard to this litigation?

13 A I believe, as I stated in my report, at the time,
14 there seems to be two arguments -- maybe not arguments but
15 opinions about Morain's conclusions and the differing
16 opinions with this computer enhancement technique used by
17 Mr. Atkins, and then also the stereoscopic analysis by Mr.
18 Welch. In my case, I was essentially asked to give an opinion,
19 what would be my opinion about those things.

20 Q The task was addressed to the methodology employed;
21 is that right?

22 A Yes, and may I add the result might affect the

1 conclusion.

2 Q Doctor, are you receiving a fee or compensation
3 for your work with regard to this litigation?

4 A Yes.

5 Q What is the rate of that compensation?

6 A \$75 per hour.

7 Q Approximately how many hours have you accumulated
8 to date?

9 MR. FRICKER: Doctor, if you don't know and if it
10 is going to take some time to come up with a guess, I don't
11 know that that is what he wants.

12 THE DEPONENT: About 18 hours.

13 BY MR. CONNORS:

14 Q Doctor, after you visited Washington in April of
15 1982, you said you returned to Ithaca and prepared the final
16 report which we have marked as DD-2743?

17 A Yes.

18 Q And you then sent that to the law firm; is that
19 correct?

20 A Yes.

21 Q Who did you send that to?

22 A Dr. Cohen.

1 Q Between the time you left Washington and the mailing
2 of that report, did you have any further contact with
3 anyone regarding this lawsuit?

4 A No.

5 Q Since the mailing of that report, have you had
6 subsequent contact with anyone regarding this lawsuit?

7 A Not until they asked me to come for this deposition.

8 Q Approximately when was that?

9 A Last week.

10 Q So, between April of 1982 and early July of 1983,
11 you had no contact with the litigation?

12 A Right.

13 Q Have you ever had occasion to contact either
14 through written or oral communications any other expert or
15 fact witness related to this litigation?

16 A No.

17 Q Have you had any professional contact with Dr.
18 Morain during this period that you have been working on the
19 C5A litigation?

20 A No.

21 Q Since April of 1982, have you received any additional
22 materials with regard to the C5A litigation?

1 MR. FRICKER: Exclusive of materials which I have
2 already indicated to you he has reviewed in his most recent
3 trip here?

4 MR. CONNORS: That was said off the record, and
5 I am trying to get it on the record now.

6 BY MR. CONNORS:

7 Q You have indicated that in the preparation of your
8 report dated April 26, 1982, you reviewed various materials
9 which are listed in that report. Since the preparation of
10 that report, have you been shown or received or had an oppor-
11 tunity to review any additional materials related to the
12 C5A litigation?

13 A The only thing that I had was yesterday. I was
14 in the office and I saw volumes of photos, and I leafed
15 through most of those available in the conference room there.
16 There is nothing that occurred to me that would add or change
17 my earlier findings.

18 MR. FRICKER: If I may, at this point, I would
19 like to indicate on the record that the materials or the
20 volumes of materials that the doctor refers to were virtually
21 all the additional photographic materials that our firm has
22 obtained to date from either the Government or Lockheed,

1 including all the black and white and color photographs,
2 the slides, the movies as well as the Atkins and Welch mater-
3 ials. All of that material was laid out and he had free
4 access to it. He was shown the films, the slides, the
5 stereoscopic materials yesterday and again this morning.

6 BY MR. CONNORS:

7 Q In addition to the photographic materials, have
8 you been shown or had an opportunity to review any additional
9 deposition or trial testimony relating to the C5A litiga-
10 tion other than as stated in your reported dated April 26,
11 1982?

12 A No.

13 Q Have you been assigned any new tasks with regard
14 to the C5A litigation other than as previously described?

15 A By the law firm?

16 Q Yes.

17 A No.

18 Q Have you completed the review of the materials
19 necessary for the task, as you understand it?

20 A Yes.

21 Q Would any opinions you have rendered with regard
22 to them today be your final opinions regarding this material?

1 A Yes.

2 Q In connection with your task for the law firm,
3 did you do any independent research regarding the geographic
4 area or the aircraft involved, maps, anything of that sort?

5 A No.

6 Q Did you prepare any calculations?

7 A No.

8 Q Have you been told that you will be expected to
9 prepare any calculations?

10 A No.

11 Q Other than the report dated April 26, 1982, which
12 we have marked Defendant's Exhibit DD-2743, have you prepared
13 any other documents with regard to this litigation?

14 A No.

15 Q Have you been provided any instructions with re-
16 gard to any contacts relating to any expert or fact witnesses
17 involved in this litigation?

18 MR. FRICKER: I object. I don't understand the
19 question.

20 BY MR. CONNORS:

21 Q Have you been, for instance, told to contact or
22 not to contact Dr. Morain?

1 MR. FRICKER: I will object and advise him not to
2 answer, because I think that would be getting into a trial
3 strategy, or something like that, or advice he has been
4 given by any attorney. Feel free to ask him who he has been
5 contacted by, but I think you already have that.

6 BY MR. CONNORS:

7 Q Dr. Liang, could you contrast for us, please, a
8 photogrammetrist and a photo interpreter?

9 A Traditionally, a photogrammetrist is one dealing
10 with measurements, geometric aspects of photos as such. So,
11 it is dealing with quantity measurements.

12 The photo interpreter deals with the quality de-
13 termination, be it vegetation, soil, geology. In other words,
14 it is a quality determination of things on the air photos.

15 Now, in some cases, the two might merge; the two
16 subdivisions might merge. If you ask am I a photogrammetrist,
17 quickly I would say no. But if you ask someone who is pre-
18 paring topographic maps, doing those things, and you ask
19 if he was a photogrammetrist, he would probably say no.

20 Q In the areas of remote sensing or photo analysis,
21 how would you characterize yourself in describing your own
22 experience and training?

1 A I would consider it interpretation.

2 Q What are the standard tools employed by a photo
3 interpreter?

4 A There are many, but the simplest one would be a
5 pocket stereoscope.

6 Let me take that back -- just by eye mainly, and
7 then pocket stereoscopes, and then by more elaborate type
8 of stereoscope, and then color additive viewers, and then
9 you go into all sorts of relatively sophisticated and compli-
10 cated equipment.

11 Q That was color additive?

12 A Yes.

13 Q What are the standard methods employed by a photo
14 interpreter?

15 A It depends on the task at hand. I imagine it could
16 be from the very simple to the more elaborate methods.

17 Q Let's confine it to a task such as given to Drs.
18 Morain and Welch. What would be the standard methods that
19 would be employed in a task such as that?

20 A I would think just looking at the photos and using
21 their experience in terms of the topography, drainage,
22 vegetation, erosion patterns, the color or the various grades

1 and sum this up together to determine what is at hand, de-
2 termining what is the answer to the question at hand.

3 Q You mentioned that a photo interpreter would start
4 by just looking at the photographs?

5 A Yes.

6 Q What would he be looking for in the case of an
7 accident reconstruction such as we are involved in now?

8 A Simply the topography, and by topography I mean
9 the change of the land, change of elevation, surface, drain-
10 age, whether there is water standing or draining, the drain-
11 age channels and erosion, as I mentioned, and also the color
12 or the grade holes, the vegetation, and then any other man-
13 made features. Those are pretty much the standard elements.

14 Q What would a photo interpreter use a pocket stereo-
15 scope for in this sort of task?

16 A I think this may probably get involved. You may
17 have mentioned Dr. Welch's use of the pocket stereoscope
18 in this case. Its use is limited because there is no depend-
19 able stereo photograph available. Therefore, I think the
20 pocket stereoscope has to be used with extreme care.

21 Q Is there any reason to believe that Dr. Welch did
22 not use it with extreme care?

1 A I cannot tell.

2 Q Do you know what equipment Dr. Welch used?

3 A I would probably have to refer back to his report.

4 Offhand, I would not know. The recollection was he tried
5 to create a stereoscopic view of the area.

6 Q You also mentioned that a photo interpreter might
7 use color additive techniques. What would be the purpose
8 of that?

9 A Those are generally in connection with spectral
10 photos when you have photographs taken at different spectral
11 intervals so that you could look at several spectral photos
12 taken at the same time with different color filters to create
13 either a natural color or false color; but it does not apply
14 in this case.

15 Q That is a standard technique?

16 A When you have spectral photos.

17 Q Where you create them through the use of filters?

18 A Yes.

19 Q In this particular case, both Dr. Morain and Dr.
20 Welch made measurements. What would be the standard for mak-
21 ing measurements from a photograph?

22 A One way of doing it would be you get all the photos

1 at hand and by your judgment you select the ones that you
2 believe represent the best available picture, and then use
3 some scale -- either man, a house, a highway of known dimen-
4 sions, or aircraft in this case and do the best you can to
5 use those as scale and then measure the dimensions you want
6 to find out. You try to see if there are contradictions,
7 whether there is other evidence, and so on.

8 Q How does a photo interpreter confirm or test his
9 findings and conclusions?

10 A If you can do some field study, but in this case
11 you cannot do that, so I don't know how.

12 Q In a field study, you would use the term ground
13 truth?

14 A Yes, ground truth.

15 Q Can you define that perhaps for us as to what
16 ground truth might include?

17 A Ground truth traditionally was something you found
18 out from the ground, so you collect it out in the field.
19 Recently, sometimes it is used more broadly, like you have
20 satellite images and you would use air photos as ground
21 proof.

22 Q Do you mean once a photo is established as accurate,

1 you could use it in other photos?

2 A You could use it for satellite pictures. This is
3 sometimes used.

4 Q General ground truth refers to checking out some-
5 thing at the actual location where the photograph was taken?

6 A Right.

7 Q Could you define stereo photography or stereoscopic?
8 Could you define what that is for us?

9 A A stereoscopic view is a view of an object or a
10 scene that was taken. Photos were taken from two different
11 positions, and you view the two pictures at the same time
12 with or without the aid of a stereoscope to get a three-
13 dimensional view.

14 Q Stereoscope can go from the very simple pocket
15 stereoscope through the mirror stereoscope up to sophisti-
16 cated magnification?

17 A Yes.

18 Q How long has stereo photography been in use?

19 A I wouldn't want to say that as an academic thing,
20 but certainly it has been used since World War II.

21 Q It is regarded as a generally accepted method in
22 the photo interpretation field?

1 A If this is done correctly. Maybe instead of taking
2 your time to question me on this, may I explain a little
3 bit why I question this stereoscopic view of Dr. Welch?

4 Q We will be getting there. My question now is
5 whether the use of stereo photography and analysis is gener-
6 ally accepted in the photo interpretation field?

7 A Within limits, yes.

8 Q What would those limits be?

9 A The limits that the stereo pair has to be done
10 with no focal-length cameras, the set positions and the exact
11 locations of the camera while the object was taken. In other
12 words, the geometric relations of the two cameras with the
13 object -- the primary geometric requirements.

14 Q How is stereo photography taken?

15 A Air photos?

16 Q Yes.

17 A Let me start with air photos.

18 The most dependable stereoscopic photos have been
19 done by an airplane because of a stable platform. For example,
20 you take a picture of Washington from this position, and
21 you move to another position and take another picture of
22 Washington, and you take a look at the two pictures and you

1 get a 3-dimensional view of Washington.

2 So, they are under very rigid conditions of camera
3 focal length, the fine height, the relationship of the two
4 camera stations and then, under such circumstances, you
5 could correctly measure everything being taken not only in
6 the horizontal directions but also the vertical directions
7 as well. Most of the topographic maps of this country are
8 done by those methods.

9 Q Stereo photography requires a certain overlap of
10 the stereo pairs of pictures, does it not?

11 A Yes.

12 Q Is there any limitation on the amount of the over-
13 lap?

14 A The area in which you could get a stereoscopic
15 view is only the area that is overlapped. So, in other words,
16 if you have 50 percent overlap, you could see 50 percent
17 of the stereoscopic view. If you have 10 percent, then you
18 can see 10 percent of the overlapped area.

19 Q So the percentage of overlap only affects the por-
20 tion of the picture that would be viewed in 3-dimension?

21 A Right.

22 Q Are there any specific performance standards set

1 forth in any standard reference texts or perhaps in the
2 manual of the American Society of Photogrammetrists that
3 relate to stereo pairs?

4 A I have not gone through the whole volume. I happen
5 to have one right here. I have faith in that manual. It is
6 pretty straightforward.

7 Q What is the actual purpose of viewing a scene in
8 stereo? What does it do for the photo interpreter?

9 A Primarily to get a 3-dimensional view of the scene.

10 Q Once a 3-dimensional scene is viewed, is that
11 useful for both measurements and analysis?

12 A Within limits.

13 Q Those are the limits you mentioned previously?

14 A Yes.

15 Q Have you ever used it yourself?

16 A Yes.

17 Q You apparently have had an opportunity to view
18 the pictures that were used by Dr. Welch?

19 A Yes.

20 Q Have you attempted to view those by using a stereo-
21 scope?

22 A I believe so. I couldn't swear to that. If not,

1 I would answer this way: I believe so, but, if not, at least
2 I view those with the naked eye.

3 Let me substantiate this to you. This is one cap-
4 ability we generally train ourselves to have. If I am given
5 a pair of stereoscopic pictures, I do not need a stereoscope
6 to look at it to get a 3-dimensional view. Anyone can do
7 it with a little bit of exercise. This is one of the first
8 few things we ask students to develop. You look at one pic-
9 ture with your left eye and the other picture with your
10 right eye and you fuse them together.

11 Q You are saying persons with some experience can
12 see the 3-dimensional image without necessarily having to
13 use a stereoscope?

14 A Right.

15 Q However, the stereoscope is a standard tool, is
16 it not?

17 A Yes.

18 Q You do not recall, in fact, whether you view them
19 through a stereoscope?

20 A I did see a 3-dimensional view.

21 Q You did see a 3-dimensional view?

22 A Yes.

1 MR. CONNORS: Let's take a brief recess.

2 [Brief recess.]

3 MR. CONNORS: We have just come back from a break,
4 and I will use this opportunity to request also that the
5 Plaintiff's counsel produce a syllabus of the courses with
6 any text documents that Dr. Liang is using in his courses
7 at Cornell.

8 MR. FRICKER: Would you follow up your requests
9 in writing.

10 MR. ALMY: Certainly we can put it in writing if
11 it is not covered by additional requests.

12 BY MR. CONNORS:

13 Q Dr. Liang, can you describe or define for us what
14 is involved in the computer processing of remote sensing
15 information?

16 A There are many but, in general, the remote sensing
17 data comes in two modes. One is in digital mode originally,
18 such as the data we get from the satellites that are used
19 worldwide, and the original data come in in digits and on
20 tapes. So, you could use the computer to manipulate the orig-
21 inal data because they come in in different spectral bands,
22 so you could make a lot of manipulations among the different

1 bands to try to get the best result you can get.

2 The other type of data comes in as photography.

3 This is what I believe was the material they used in these
4 cases.

5 In order to do the computer enhancement, I believe
6 one needs to digitize the original photography which shows
7 up in the enhanced photos, and then you try to, shall we
8 say, enhance the color grade values of the individual digits
9 and to emphasize certain features in the photos.

10 Q Are both of these modes generally accepted methods
11 of processing photographic materials today?

12 A If the original data is digital, then this enhance-
13 ment is going into the very bottom of the source of informa-
14 tion. In other words, you get back to the individual digits
15 and then do something about it. So, this is generally
16 accepted.

17 The other source, the other mode of information
18 comes from the photos. They are debatable. Not everybody
19 agrees it is useful in that sense. Maybe I shouldn't say
20 useful but improving it. If the original source of informa-
21 tion is a photo and the original source of data is there
22 and you start to digitize it, your information is sort of

1 one generation off from the original. This is as you are
2 trying to dissect the original photo. It is quite different
3 from your original digital. There is a problem that you lose
4 some of the original fine points of the original photo, and
5 this is one thing I usually advise against the students
6 going out to various agencies. I say, "You be careful. If
7 you start with a photo and start to digitize it, you are
8 going to lose something, and you are one generation off."

9 The other consideration is that enhancement also
10 has its limits. Assuming that you do not lose anything, this
11 one generation is beside the point. You start to filter out
12 some of the noises, so to speak, the background noises. This
13 is almost like radio. You try to filter out the undesirable
14 noises so you hear things more clearly. Many professionals
15 have some misgivings about these, in that you emphasize cer-
16 tain points. Usually you would lose some details in others.

17 In other words, the idea is you try to emphasize
18 certain color tones, and so on. In so doing, generally, you
19 would lose some of the details in the other ranges of tones
20 and colors, so much so that in recent days, like NASA, I
21 wouldn't say doctor but try to enhance some of the products
22 as they come back from the satellite. This is besides the

1 one generation, the original digital data, and they try to
2 process it so that it would be easier and nicer to look at.
3 Many professionals are against that. They are telling NASA,
4 "Look, don't bother to make it look nicer here." We could
5 interpret what we would want from the original information,
6 and we could do it better." Maybe I have expanded on this
7 line.

8 So, my feeling is that, one, in principle, you
9 digitize a photo when the original photo is not digital in-
10 formation to begin with, thus making it one generation off
11 from the original; and, two, by enhancing elements, you
12 might decrease the clarity of the other telltale information.
13 This is one principle.

14 Then, specifically, in this case, I look at the
15 pictures used by Morain and the enhancement photo by, I be-
16 lieve, Atkins, in this case, and it does not convince me
17 of an improvement in terms of what we can interpret. That
18 is my observation.

19 Q Doctor, other than this litigation, have you ever
20 had occasion to digitize or use digitized information de-
21 rived from a photograph?

22 A Yes.

1 Q Are you able to work with that material?

2 A Yes.

3 Q Does it provide you with useful information, given
4 your level of expertise?

5 A I generally think it is not useful.

6 Q Then why do you use it?

7 A I run all these projects and all the data comes
8 through and people use different things.

9 Q Do you also use photography that has been enhanced?

10 A Yes.

11 Q What precise mechanism did Arlen Atkins use in
12 terms of the computer enhancement of the programs?

13 A I would have to go back to their reports. Offhand,
14 I do not recall the details.

15 The basic principle is that you digitize and then
16 try to manipulate the grade or color of the objects that
17 you are looking at.

18 Q Given a person who is familiar either through
19 training or experience with photogrammetric and photo inter-
20 pretation techniques, does the ability to digitize a photo-
21 graph provide an opportunity to get additional information
22 from a given photograph?

1 A Could you try that again, please.

2 MR. CONNORS: Why don't we have it read back.

3 [The pending question was read by the reporter.]

4 THE DEPONENT: Sometimes.

5 BY MR. CONNORS:

6 Q Does the ability to enhance a particular photo-
7 graph through any of the known and accepted computer pro-
8 cessing techniques allow a skilled or experienced interpreter
9 to gain additional information from a photograph?

10 A Sometimes.

11 Q Are you familiar with the technique of viewing
12 a digitized image from whatever source on a high-resolution
13 CRT as opposed to a paper image?

14 A Could I have that read back, please.

15 [The pending question was read by the reporter.]

16 THE DEPONENT: Yes.

17 BY MR. CONNORS:

18 Q Does the ability to use such an image on a high-
19 resolution CRT enable the interpreter to see more detail
20 than would be available in the paper print of a picture?

21 A Not necessarily.

22 Q Can it?

1 A Could I answer in a supporting way?

2 Q Surely.

3 A It depends on how good a paper printer you have
4 and whether you have a facility to magnify to the degree
5 that you would want to.

6 Q So, the degree to which magnification was required
7 would play a significant part in determining whether you
8 would get any useful information from the CRT image as
9 opposed to the paper image?

10 A I go back to my explanation. If I understand it,
11 you are talking about the original paper print, whereas with
12 the CRT, you are talking about the digitized information?

13 Q That is correct.

14 A So, you could lose some of the original informa-
15 tion when you digitize your high-quality prints. Even with
16 low-quality prints, when you digitize, you are not really
17 any better.

18 Q Do you know if Dr. Morain used the computerized
19 data from Arlen Atkins?

20 A I do not know.

21 Q Would you expect Dr. Morain to have had occasion
22 to use computer-processed photographic information in his

1 work generally?

2 A I would think so.

3 Q Would you expect him to have used techniques such
4 as stereo analysis for this type of study?

5 A I would not know, but I would expect so.

6 Q You stated that the task which you were given was
7 to examine the methodologies of the experts employed with
8 regard to the photo interpretation of the photographs in-
9 volved in this litigation. How did you approach or go about
10 this task?

11 A I studied the first Morain report, I believe, and
12 then in sequence I went to the other two reports. Now, I
13 have forgotten which one I looked at first. I concentrated
14 on my tasks of evaluating the idea of the enhancement and
15 the stereo view first to assess whether they are applicable,
16 useful in a specific case and, too, in particular, how does
17 it affect the outcome of the results.

18 Q To what extent did you examine the particular
19 photographs which were referred to or appended to the re-
20 ports of Dr. Morain, Dr. Welch or Mr. Atkins?

21 A I looked at each of the photos and compared the
22 end products of the enhanced ones and the original ones,

1 and then I also tried to see stereoscopically Dr. Welch's
2 examples and then compared them to some of the photos that
3 Dr. Morain used based on his conclusions about the topography.

4 Q Dr. Morain's conclusions differ considerably from
5 those of Dr. Welch and Mr. Atkins both as to the length of
6 the total slide of the aircraft parts and also the interpre-
7 tation of the given features, specifically whether there
8 is a hill, whether there are track marks, et cetera.

9 Did you make any attempt to resolve in your own
10 mind which of the reports or conclusions were correct?

11 A First, about the topography, as I examined the
12 photos, I am convinced that there is a rise in topography
13 in front of the final resting place of the troop compartment.
14 The various photos I saw all appear to me to point to this
15 conclusion.

16 As far as the track, in general, I am in agreement
17 with Dr. Morain's finding that the track was discontinuous
18 until the final track which was only a short distance from
19 the final resting place of the troop compartment. The en-
20 hanced photos shown by Mr. Atkins do not persuade me to be-
21 lieve otherwise. This is why I said the results have not
22 been convincing to me.

1 Q Dr. Liang, you mentioned that you had concluded
2 that there was a rise in front of the troop compartment.
3 Did you make any determination as to whether the troop com-
4 partment was in contact with that rise?

5 A Yes.

6 Q Is your opinion that it is?

7 A Yes.

8 Q How high a rise are you talking about?

9 A I may have to go back, but I was thinking about
10 this a few weeks ago.

11 Q 2, 3, 4, up to 5 feet?

12 A I have to go back to my records, but it is more
13 than 2 feet.

14 Q Over what distance does that rise in elevation
15 take place?

16 A Do you mean the distance? What I saw was the troop
17 compartment against the rise area into this rise.

18 Q The question was, you have described what you be-
19 lieve you have seen as a rise in the ground, in the eleva-
20 tion. Now, a rise can either appear immediately and look
21 like a step or it can appear gradually like a hill going
22 up. The question is, over what distance does this elevation

1 or rise occur?

2 MR. FRICKER: Do you understand the question?

3 THE DEPONENT: Yes. What is the length of the
4 troop compartment?

5 MR. FRICKER: Do you want to provide him with that?

6 MR. CONNORS: No, I will take it from whatever
7 he has.

8 BY MR. CONNORS:

9 Q Could you identify for us what you are looking
10 at, Doctor?

11 MR. FRICKER: Show it to him.

12 MR. CONNORS: Let the record reflect Dr. Liang
13 has just given me a document on the top of which reads:
14 "C-5A SN 68-218 4 April 1975." It appears to be a chart
15 of the accident area.

16 BY MR. CONNORS:

17 Q May I ask if this chart was taken from Dr. Morain's
18 report?

19 A Yes, I think it is from Morain's report. I also
20 have a copy of Morain's report here. I am trying to find
21 some dimension references.

22 I cannot give you an answer to your question

1 without careful measurements. As I said, I really did not
2 make the measurements. However, I would say it is plowed
3 into the rise.

4 BY MR. CONNORS:

5 Q Doctor, we have been discussing the rise which
6 you believe you see at the forward end of the troop compart-
7 ment in the various photographs you have examined. In the
8 course of our discussion, you refer to the diagram which
9 was part of Dr. Morain's report which we have now pulled
10 out separately and will be marked Defendant's Exhibit DD-2724.

11 I am going to give you a red pen and ask you to
12 please mark on there the area of elevation that you have
13 been referring to.

14 [Diagram from Morain report was marked
15 Defendant's Exhibit No. DD-2744 for
16 identification.]

17 MR. FRICKER: Let the record reflect he has placed
18 a small red X on there.

19 BY MR. CONNORS:

20 Q I will ask you to initial that, if you would,
21 please, Doctor.

22 A [Deponent complies.]

1 Q Would you indicate on there also the extent of
2 the elevation, that is, its length, where it appears to run
3 from and to. You can indicate in blue the extent of the
4 elevation.

5 A [Deponent complies.]

6 Q Will the same initials do for that, too?

7 A Yes, I would hope so.

8 Q Did you have any criticisms at all of the methods
9 employed by Dr. Morain in his analysis?

10 A Not particularly. I focused my attention on those
11 points. He dwells a lot in the other areas which I did not
12 pay too much attention to.

13 Q Doctor, you have indicated that you apparently
14 have some criticism with Dr. Welch's use of stereo analysis
15 techniques with regard to the pictures he reviewed and which
16 you have now reviewed also.

17 What, precisely, is the problem with Dr. Welch's
18 use of stereo analysis in this case?

19 A We often give students examples of stereo paths
20 to look at. You can align those stereos in the proper direc-
21 tion. You could give two stereoscopic views and you move
22 into another position and you can see the 3-dimensional view

1 change. You could move farther. You could see no flat. You
2 could move farther and you could see the reverse of the
3 topography. You could see low point and high.

4 Now, this is even with the same pair of stereo-
5 scopic photos. Then we experimented in the early days with
6 the moon photos by earlier explorations. You found find that
7 if you do not know the exact locations of your camera or
8 your mode, you could have all sorts of differing failures
9 come out from the stereo viewing. So, we have been very care-
10 ful in using the still views of unknown camera positions,
11 unknown focal lengths.

12 In this particular case, since the stereo view
13 made you feel it was flatter than the other numerous photos
14 indicate, then I think we should be rather critical about
15 them.

16 As I mentioned, it is probably worth trying but
17 maybe the results would be taken very carefully and you
18 might even need to reconstruct other stereo models.

19 Q You are not equating Dr. Welch with the students
20 in your class, are you, in terms of their experience to use
21 stereo photography?

22 A What was that?

1 Q Are you attempting to compare Dr. Welch to your
2 students in your class with the experience and training he
3 has in use of stereo photography?

4 A I am not comparing him. I am comparing my experi-
5 ence with the stills.

6 Q My question is, what is your criticism of Dr.
7 Welch's use of stereo photography in this case?

8 A Because the camera positions and the focal length
9 and the optical geometry of the situation were unknown.

10 Q For what purpose would you have to know the focal
11 lengths, the topical geometry, et cetera?

12 A Because you want to find out the third dimension,
13 which is the rise from all of the geometric relationships.

14 Q In other words, to measure the height of the
15 elevation?

16 A Right.

17 Q Doctor, you are familiar with rice paddy agricul-
18 ture, are you not?

19 A Yes.

20 Q And you have experience in rice paddy areas?

21 A Yes.

22 Q If a heavy object weighing several thousand pounds

1 impacted in a rice paddy at a high rate of speed, what type
2 of mark would it leave in the soil?

3 A It depends on the stage of the rice cultivation.

4 Q Let's assume that there was water in the rice
5 paddy. What would be the mark that would be left on the soil
6 by such an object?

7 A If the rice paddy is filled with water, there is
8 no mark there.

9 Q In making his measurements, Dr. Morain took what
10 he believed to be the dimensions of known objects and then
11 scaled up to the longer dimensions he was trying to calcu-
12 late; is that correct?

13 A I recall there were some discrepancies about the
14 calculations, the measurements, the marks, and so on. I did
15 not really go into much of the dimensions of the aircraft,
16 but certainly the dimensions provided, if I recall, were
17 provided by Lockheed, the aircraft manufacturer. That would
18 be the more dependable data. I have no argument with that.

19 Q If Dr. Morain used incorrect measurements, then
20 his eventual measurements would be incorrect?

21 A Yes.

22 Q Isn't it also correct that when Dr. Morain made

1 his measurements, he used photographs which he selected by
2 his rough estimation that the objects in the photos were
3 the same distance from the camera lengths?

4 A I do not recall at this moment.

5 Q Doctor, when you are attempting to make a measure-
6 ment on a line or a physical feature that runs at an angle
7 to the margins of the picture, you use something called a
8 cosine correction; is that correct?

9 A That is correct.

10 Q When Dr. Morain attempted to make his measurements,
11 he did not use the cosine correction for angles estimated
12 at less than 10 degrees; is that correct?

13 A I think so.

14 Q Doctor, what is the distance in feet or percentages
15 between the results obtained by Dr. Morain and Dr. Welch
16 and Mr. Atkins with regard to the distance the troop compart-
17 ment traveled from the river bank until its final resting
18 place?

19 A I believe the Morain report gave the final track
20 was 165 feet. He said it could stretch to something like
21 260. These are just my rough figures. I believe the other
22 report is much longer. Offhand, I have to depend on filed

1 information that is much longer.

2 Q There is considerable difference in the two figures,

3 is there not?

4 A Yes.

5 Q That would indicate that one or the other is not

6 correct. Would you agree?

7 A Yes.

8 Q Do you have any opinion regarding the distance

9 measurements which were done by Mr. Atkins of the pictures

10 which he examined?

11 A Not specifically.

12 Q Do you have any criticism of his techniques? Would

13 you agree they are valid?

14 A I think the difference probably would be in one

15 argument about the way you consider the track, if one con-

16 siders the continuous or discontinuous track, and then if

17 I reconstruct, the argument was that Mr. Atkins tried to

18 argue for the longer track because he thought that the en-

19 hanced photo would indicate that; whereas, Morain's report

20 was based on earlier review of the photo which was shorter,

21 and my conclusion was as stated there that the enhanced

22 photo, regardless of the argument that I had already been

1 given, it does not convince me of a continuous track.

2 Q Doctor, my question was really addressed to the
3 distance measurements done by Mr. Atkins.

4 Specifically, let's talk about the distance from
5 the west river bank side of the Saigon River to the place
6 where the troop compartment eventually came to rest. Do you
7 have any disagreement with his conclusions regarding that
8 distance?

9 A I am in favor, as I say, of Dr. Morain's conclusion
10 of the continuous track quite near to the final resting
11 place.

12 Q Doctor, I am not talking about the continuity of
13 the track but, rather, the total number of feet from the
14 river bank to where the troop compartment came to rest.

15 A The distance?

16 Q Right.

17 Q I don't have total recollection, but I have a lot
18 of faith in the measurements as far as the physical distance
19 from the river bank to the resting place.

20 I have no argument with either Mr. Atkins' or Dr.
21 Welch's measurements.

22 MR. CONNORS: Just for the record, we would like

1 to note that immediate prior to the commencement of this
2 deposition, we were presented with the report of Dr. Ta Liang
3 dated April 26, 1982, which has now been identified as De-
4 fendant's Exhibit DD-2743. The document was presented to
5 us by Mr. Fricker.

6 We would note that the production of this document
7 is more than a year late and certainly was covered by various
8 requests regarding production of experts engaged in this
9 litigation.

10 I would also like to note that on several occasions
11 today, Dr. Liang advised us that he no longer had any recol-
12 lection of particular facts, and we regard the late produc-
13 tion of this document and, thus, the late deposition of Dr.
14 Liang as perhaps the cause of that, and that concludes my
15 statement.

16 MR. FRICKER: Let me make a brief reply statement.

17 The record will speak best for what questions
18 posed Dr. Liang indicated less than total computer-like re-
19 call. The only one of any significance that I remember
20 having been asked dealt with specific distances, the length
21 of the troop compartment or the distance as measured by one
22 of Lockheed's experts from the bank of the river to the final

1 resting place of the troop compartment.

2 These are matters which if, indeed, opposing coun-
3 sel felt important to ascertain on this record, they were
4 quite capable of producing their own experts' reports and
5 asking if this is the document you saw and if this is the
6 measurement. I don't think any expert is required to have
7 total recall of all figures.

8 The timing of the deposition of Dr. Liang, as I
9 understand it, was in effect worked out, albeit with some
10 difficulties following his identification in the pleadings
11 submitted by Plaintiff's counsel. It was the first of a
12 series of depositions to be taken in this case. I don't see
13 anything untoward or suspect about the timing of his being
14 presented as an expert or anything about the manner in which
15 he conducted himself today. He has been quite forthright
16 and candid so far as I can determine with his report which,
17 admittedly, was dated sometime ago and, I think, substan-
18 tially before the decision was made that the doctor would
19 be offered as a witness at a trial, namely, the Kurth trial.

20 MR. CONNORS: For the record, my statement was
21 not intended to criticize Dr. Liang.

22 MR. FRICKER: I don't think he or I took it that

1 way.

2 MR. CONNORS: Thank you very much, Doctor.

3 [The deposition was concluded at 12:30 p.m.]

4 _____

5 I, Dr. Ta Liang, do hereby certify that I have read
6 the foregoing 64 pages of my deposition and attest to the
7 accurate transcription of my answers given to the questions
8 propounded.

9 _____

10 _____

11 [Signature of Deponent]

12 _____

13 Sworn and subscribed to before me this _____ day of
14 _____, 1983.

15 _____

16 _____

17 NOTARY PUBLIC

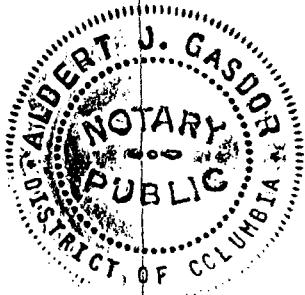
18 _____

19 _____

CERTIFICATE OF NOTARY PUBLIC/REPORTER

UNITED STATES OF AMERICA |
DISTRICT OF COLUMBIA | ss.

I, Albert J. Gasdor, a Notary Public in and for the District of Columbia, the officer before whom the foregoing deposition was taken, do hereby certify that the witness whose testimony appears herein was duly sworn by me; that the testimony of said witness is a true and accurate transcription of the stenographic notes taken by me and thereafter reduced to typewritten form by me.


I further certify that I am neither counsel for, related to, nor employed by any of the parties to this action in which this deposition was taken; and, further, that I am not a relative or employee of any attorney employed by the parties hereto, nor financially interested in the outcome of this litigation.

IN WITNESS WHEREOF, I have hereunto set my hand and affixed my notarial seal this 4th day of August, 1983.

Albert J. Gasdor

Albert J. Gasdor

Notary Public in and for
the District of Columbia

My Commission expires:

July 31, 1985

Biographical Summary of Ta Liang

Education

B.E. 1937, Tsing Hua University, China, M.C.E.
1948, Ph.D. 1952, Cornell University.

Professional Experience 1970 to date

Professor of Civil and Environmental Engineering,
Cornell University, Ithaca, New York, teaching courses
and directing research in Airphoto Interpretation,
Remote Sensing, and Physical Environment Evaluation.

Principal Investigator, NASA-sponsored Remote Sensing
Program, Cornell University, 1972-date.

Co-investigator, Puerto Rico Natural Resources Inventory
Project, Cornell University, 1971-73.

Visiting Professor, Colorado School of Mines, Golden,
Colorado. Co-investigator, Colorado Natural Resources
Inventory Project, 1970.

Consultant to national and international governmental
and industrial organizations in the use of airphoto
and remote sensing methods in national inventory and
planning, location for power plants, superport, Arctic
gas line, transportation routes, and other engineering,
agricultural and land development projects in the
United States, Canada, Puerto Rico, Barbados, Chile,
southeast, south and southwest Asia, China, and west
Africa.

1963-1970

Professor of Civil Engineering, Cornell University.

Visiting Professor, Cornell Aeronautical Laboratory,
Buffalo, N.Y., 1966-67.

Visiting Lecturer, Graduate School of Planning,
University of Puerto Rico, 1965-66.

Director, Tropical Soils Airphoto Research Project,
Cornell University (sponsored by the Air Force
Cambridge Research Laboratories) 1961-65.

Consultant to governments and industries in engineering
and airphoto projects, in the U.S., Canada, Caribbean
area, Central and South America, the Middle East, South-
east Asia, North, West, East, and Central Africa and
Western Australia.

1957-1963

Associate Professor of Civil Engineering, Cornell
University.

Consultant in engineering and airphoto projects in
various parts of U.S. and abroad.

Chairman, Photographic Interpretation Committee,
American Society of Photogrammetry, 1960-61.

DD-2741 Ta Liang
Date 7/13/83
Rptr Q.J. Pasdo

1955-1957

Senior Soils and Foundation Engineer, Tippetts-Abbett-McCarthy-Stratton, New York.

Airphoto and field investigation of soils, foundations and construction material sources in projects of dams, highways, railroads, airfields, and ports, in various parts of U.S. and abroad.

Lecturer in Engineering Interpretation of Aerial Photography, City College of New York, 1957.

1954-1955

Field Director and Visiting Associate Professor, Cornell University Airphoto Team in Burma, sponsored by the U.S. State Department Foreign Operations Administration. The team was composed of experts in the fields of engineering, geology, agriculture, forestry, and city planning to train Burmese government officials.

1950-1954

Research Associate in Civil Engineering, Cornell University, conducted research projects sponsored by U.S. Navy, U.S. Army, and C.A.A. in the fields of soils and aerial photography. Did field work in the United States, Canada, Pacific area, and the Philippines.

1946-1950

Research and graduate work at Cornell University in Airphoto Interpretation, Soils Engineering, Engineering Geology, and Transportation Engineering.

1942-1945

Senior Engineer, U.S. Armed Forces in China-Burma-India Theater. Supervision of design and construction of roads, airports, and housing facilities. Awarded U.S. War Department Meritorious Civilian Service Emblem, 1945.

1937-1942

Highways and railroads survey, design, and construction, China and Burma.

PUBLICATIONS AND REPORTS

Analysis of Landfills with Historic Airphotos (co-author) ASCE/ASP Specialty Conference on Civil Engineering Applications of Remote Sensing. American Society of Civil Engineers, New York, N.Y. 1980.

Airphoto Interpretation for Engineering Applications, Historical Perspective and Future Evaluation: V. Tropical Regions, invited paper, American Society of Photogrammetry symposium, Washington, D.C. 1979.

Landslides: Analysis and Control, Recognition and Identification Chapter (co-author), Transportation Research Board, National Academy of Sciences, Washington, D.C. 1978.

PUBLICATIONS
AND REPORTS
(continued)

The use of Airphoto Interpretation and Remote Sensing in Soil Resources Inventories (co-author), invited paper, Soil Resources Inventory Workshop, Cornell Agricultural and Life Sciences College, sponsored by the U.S. Agency for International Development, Ithaca, N.Y. 1977.

Image Interpretation (contributing author), Chapter in Manual of Remote Sensing, American Society of Photogrammetry, Washington, D.C. 1975.

Airphoto Analysis in the Tropics: Crop Identification (co-author), Proceedings, Tenth Symposium on International Remote Sensing of Environment, Ann Arbor, Michigan, 1975.

Land Inventory Systems - The Cornell Experience (co-author), invited paper in International Symposium on Aerial Inventory of Natural Resources, Mexico City, Mexico, 1973.

Remote Sensing of the Physical Environment, invited paper American Society of Photogrammetry national symposium, Washington, D.C. 1972.

Forest Environments in Tropical Life Zones (co-author), Pergamon Press Inc., Oxford and New York, 1971.

Airphoto Interpretation of Engineering Soil in Tropical Environments, Proceedings, Third Symposium on Remote Sensing of Environment, Ann Arbor, Michigan, 1965.

Application of Airphoto Interpretation in Route Location, (co-author), International Archives of Photogrammetry Vol. XIV, Delft, The Netherlands, 1963.

A critical Review of Engineering Uses of Airphotos in the Quebec Cartier Mining Railway Project, Canada (co-author), presented at the Semi-Annual National Meeting, American Society of Photogrammetry, New York, 1961.

Landslides and Engineering Practice (co-author of Airphoto Interpretation Chapter), Highway Research Board, National Academy of Sciences, 1958.

Technical Project Reports on national airphoto and remote sensing program; soil survey; railroad, highway, and pipeline route location; site evaluation; construction material search; and landslide investigation, in various parts of the world, 1955 to date.

Research Project Reports on: Remote Sensing Program, NASA, 1972-80; Natural Resources Inventory, Puerto Rico (co-author), 1973; Natural Resources Inventory, Colorado (co-author), 1971; Tropical Soils Airphoto Research, U.S. Air Force, 1964; Airphoto Interpretation, Burma, U.S. FOA, 1955; Long-Range Photography Research, U.S. Army, 1954; Soil Moisture and Density Research, CAA, 1952; Key to Aerial Photographic Determination of Ground Conditions, Landform Series, Six Volumes (co-author), U.S. Office of Naval Research, 1951.

TA LIANG
CONSULTANT
2 TRIPHAMMER LANE, ITHACA, NEW YORK 14850

PHONES: 607 256-8074
607 257-0484

April 26, 1982

Charles R. Work, Esquire
Peabody, Lambert & Meyers
1150 Connecticut Avenue, N.W., 12th Floor
Washington, D. C. 20036

Dear Mr. Work:

I have had the opportunity to review the deposition and trial testimony of Mr. Atkins, the computer-enhanced photographs he created and relied upon, the report of Dr. Welch, the photographs he relied upon, and two motion pictures (Tarbell-1 and 75 CRK-DC-2184). I have also reviewed the report of Dr. Morain and the photographs he relied upon.

I was asked to review these materials and determine the significance, if any, of computer enhancement and stereoscopic analysis by Mr. Atkins and Dr. Welch respectively to the issue of the lengths of the tracks of the troop compartment and the existence of a ground rise at the forward end of the troop compartment, at the point of last impact.

Upon review of these materials, and upon consideration of the task before me, I have an opinion regarding the use of the technologies employed by Mr. Atkins and Dr. Welch.

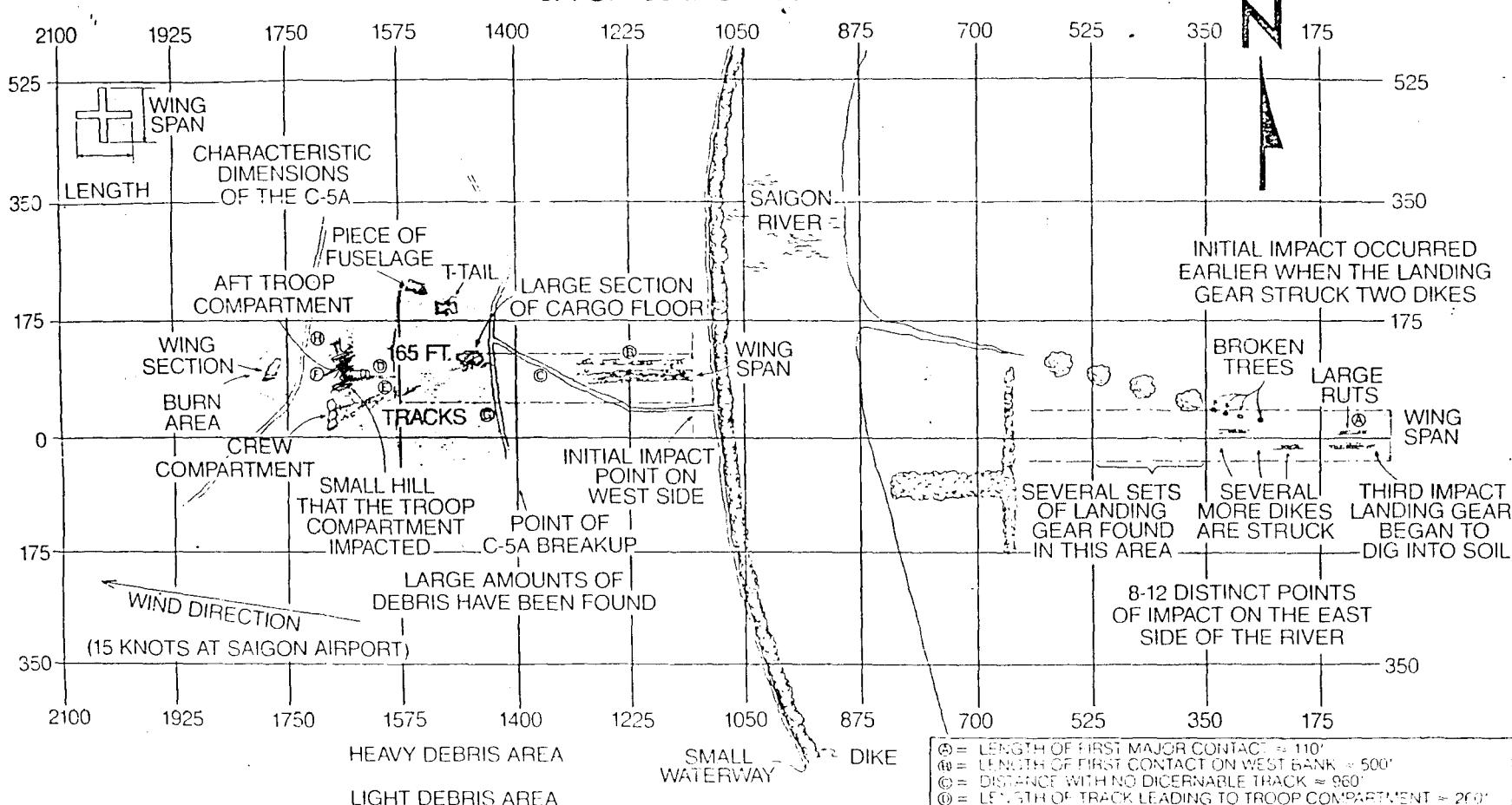
1. Regarding the use of computer enhancement techniques as employed by Mr. Atkins, I have the following opinion: Computer enhancement, an increasingly used technique, has not produced significantly different results in this case. The generally agreed-to continuous track by the troop compartment is clear in all original photographs. The cause of discontinuous "track" or disturbance is subject to debate and has not been enhanced convincingly. The use of computer enhancement, meanwhile, has its limitations and should be used with caution. In digitizing the original photographs (in contrast to the original data being digital), one always loses some information ("one generation away"). Furthermore, in computer manipulation, one may inadvertently overlook details in the photographs that might provide useful information. For practical purposes, given the quality of the original photo prints, the improvement, if any, of measurements by "pixels" is negligible.

2. Regarding the use of stereoscopic analysis by Dr. Welch, I have the following opinion: An attempt to create some stereo view for topography is always commendable. However, it could be misleading or even erroneous for visual analysis, particularly in not-rugged terrain, when the position and attitude of the camera for each photo is unknown. Thus, a small rise of the topography in front of the final resting place of the troop compartment, as suggested by Dr. Morain, (the evidence provided by several ground and air oblique photos is rather convincing) could possibly

2743
Ta Liang
Date 7/13/83
Apr 26

be missed with the proposed "stereo" by Dr. Welch. In other words, without properly created stereo models, the terrain condition suggested by Dr. Morain cannot be disproved. Rigorous analytical solution in stereo would require such information as camera focal length, tangential distortion, and the like.

Altogether, the use of computer enhancement and stereoscopic analysis as employed by Mr. Atkins and Dr. Welch does nothing more to answer the issue of the length of the tracks, the severity of the impact, or the non-existence of a ground rise than do more standard methods. Further, their approaches could be misleading and confusing to the layman.


Finally, upon review of these materials, I find nothing to contradict the conclusions reached by Dr. Morain in his report. I believe there is sound photographic evidence upon which to base Dr. Morain's opinion regarding the impact of the troop compartment with the ground, and I concur with his findings.

Very truly yours,

Ta Liang
Consultant

C-5A SN 68-218 4 APRIL 1975

DD- 2744 ^{Tg}
Date 7/13/83
Rptr cl Y is

⑧ = LENGTH OF FIRST MAJOR CONTACT = 110'
 ⑨ = LENGTH OF FIRST CONTACT ON WEST BANK = 500'
 ⑩ = DISTANCE WITH NO DICERNABLE TRACK = 960'
 ⑪ = LENGTH OF TRACK LEADING TO TROOP COMPARTMENT = 260'
 ⑫ = LENGTH OF TRACK LEADING TO CREW COMPARTMENT = 390'
 ⑬ = DISTANCE FROM TROOP COMPARTMENT TO WING DEBRIS = 360'
 ⑭ = DISTANCE FROM RIVER BANK TO CANAL WALKWAY = 1150'
 (CONFIRMED ON ARMY TOPOGRAPHIC MAP)
 ⑮ = DISTANCE FROM RIVER BANK TO CANAL WALKWAY = 1920'
 (CONFIRMED ON ARMY TOPOGRAPHIC MAP)
 ⑯ = 1310' FROM WEST BANK
 TROOP COMPARTMENT IS = 1710' FROM WEST BANK
 WING DEBRIS IS = 2000' FROM WEST BANK