

William J. Fitzgerald

STUDENT HANDOUT

INSTRUMENT FLIGHT SUBJECTS

BOOK I

5/69

SEPTEMBER 1969

DEPARTMENT OF FIXED WING TRAINING
UNITED STATES ARMY AVIATION SCHOOL
FORT RUCKER, ALABAMA

TABLE OF CONTENTS

<u>File No.</u>	<u>Title</u>	<u>Page</u>
610-3	Tactical Map Review and Tactical Flight Procedures	
	Performance Objectives	1
	Student Outline	3
	SOI Extract	7
	Practical Exercise No. 1	~ 9
637-4	Enroute and Approach Charts	
	Performance Objectives	12
	Student Outline	13
	Practical Exercise No. 1	17
	Practical Exercise No. 1 - Key	19
	Practical Exercise No. 2	21
	Practical Exercise No. 2 - Key	23
621-2	Navigational Computer	
	Practical Exercise	34
	Practical Exercise - Key	36
635-4	Flight Plans	
	Performance Objectives	37
	Student Outline	40
	Performance Check No. 1	50
	Performance Check No. 1 - Key	55
	Practical Exercise No. 1	57
697-4	FAR Review	
	Performance Objectives	60
	Student Outline	62
	Practical Exercise No. 1	70
	Practical Exercise No. 2	73

NOTE: 621-2 Navigational Computer Programmed Text Booklet will be passed out in class.

WRITTEN BY: MAJ Harry F. Baldwin

DATE: September 1969

APPROVED BY: COL Charles R. Shaw
Director

DATE: September 1969

PERFORMANCE OBJECTIVES

TACTICAL MAP REVIEW AND TACTICAL FLIGHT PROCEDURES

1. KNOWLEDGES: Without the aid of notes, the student will be able to state without error—
 - a. How grid and magnetic courses are found on a tactical map.
 - b. How a grid course is converted to a magnetic course.
 - c. How to plot military coordinates.
 - d. How to read contour lines.
 - e. The relationship of terrain elevation to obstacle elevation.
 - f. Proper use of map scales to determine distance.
 - g. Corridor dimensions.
 - h. Minimum en route altitude (MEA).
 - i. Computation of ETE in a tactical area.
 - j. Obtaining magnetic course (MC) and initial magnetic heading for tactical IFR flights.
 - k. Fuel required on a tactical IFR flight.
 - l. The classroom procedure for authentication of the NDB.
 - m. Reasons for filing a flight plan in a tactical area.
 - n. Situations to consider in tactical emergency planning.
2. SKILLS: When given a tactical map, the student will be able to perform the following within the specified limitations:
 - a. Identify correctly the map sheet title and number.
 - b. Name correctly the 100,000 meter grid square identifier.
 - c. Measure the distance between two points.
 - d. Give the military grid coordinates of a specified point to the nearest 10 meters.
 - e. Locate a point on the map within 10 meters when given the coordinates.
 - f. Determine the elevation of a given point through the use of contour lines within 10 meters.

- g. Distinguish and properly identify terrain features by analyzing contour line arrangements.
- h. Name correctly the topographical features when given grid coordinates, using the legend if necessary.

Using both the mathematical conversion factor and the MB-4 computer to convert meters to feet—

- i. Accurately plot a corridor on the map.
- j. Determine the highest obstacle in the corridor.
- k. Determine the minimum en route altitude (MEA) for use in the corridor.

STUDENT OUTLINE

TACTICAL MAP REVIEW AND TACTICAL FLIGHT PROCEDURES

1. General chart information.

a. Marginal data.

(1) Name of sheet.

(2) Sheet number.

(3) Index to adjacent sheets.

(4) Grid zone designation.

(5) Scale ratio.

(6) Distance scale.

(7) Contours.

(8) Declination diagram.

(9) Conversion of grid north to magnetic north.

(10) Elevation guide box.

(11) Legend.

b. Topographical symbols.

2. Grid and magnetic courses.

3. Military grid coordinates.

4. Mission principles.

a. Helicopter capability.

b. All-weather needs.

c. Missions.

d. Navigational aids.

e. Authentication.

5. Major planning factors:

a. Preflight planning.

(1) Briefing.

(2) Flight plan.

(3) Emergency.

b. Route survey.

(1) Corridor dimensions.

(2) MEA.

(3) ETE.

(4) Fuel.

(5) Alternate selection.

(6) Enroute hazards.

(7) Enroute procedures.

c. Copilot duties.

SOI EXTRACT

TACTICAL MAP REVIEW AND TACTICAL FLIGHT PROCEDURES

NOTE: For classroom use only. Reconnaissance at the operating area is necessary for determining general vegetation heights for en route computations and specific heights in the buffer zone.

VEGETATION HEIGHT GUIDE

Dense jungle, forest	100 feet
Pine, rubber, mangrove trees	50 feet
Bamboo, coffee, palm trees	30 feet
Brushwood, clear space, tea	10 feet

SOI EXTRACT

NOTE: Classroom illustration only.

1. Policies.
 - a. Tactical radios will be operated only as required for essential communications.
 - b. Communications priority will be in the following order: Emergency, combat assault, combat support, air operations, and ground operations.
 - c. Communications affecting movement in combat areas will be authenticated.
 - d. Radio broadcasts in connection with observed enemy operations will be made in the clear.
 - e. Radio position reports will be in the clear or coded as directed by the unit CO or higher authority.
2. Authentication system.
 - a. Test elements for transmission authentication. Example: (Call sign), this is (call sign) authenticate MIKE ECHO, over.
 - b. Reply elements for transmission authentication. Example: (Call sign), this is (call sign) authentication is CHARLIE MIKE, over.
 - c. Procedure for using authentication table.

- (1) Locate first test element character (MIKE) in left column.
- (2) Locate second test element character (ECHO) in same row found in step a.
- (3) Reply elements (CHARLIE MIKE) are the letters before and after the second test element.

AUTHENTICATION TABLE

A	SHPR	QUACK	JMLVZ	DGBNY	OEWFIX
1B	KMJLE	VWQST	UPFXB	CIGOA	ZRHNDY
2C	EMSQW	LVYJR	IACTU	GOBXP	ZFKHND
3D	USNTW	JIMFD	RYKCE	ZPXLA	GHQOVB
4E	JBOQF	AXHGC	TELMN	UDKYI	WRSPZV
5F	KMUNY	DLVZH	PSRXA	QOJCB	FEITGW
6G	KGAYC	JFRZU	PWEST	NQMBX	VLDOIH
7H	LQZCR	FJNKG	EHTBD	OYSXM	IPVWUA
8I	NTQDF	CZVPG	MKHSO	JUEBW	IAXLRY
9J	QBPIH	OMUTL	KWFAJ	XYSDV	CEGNZR
K	GDBHM	UILEF	QPNYZ	KVORX	JCWATS
L	DZNAU	BLTGC	FWRQI	HXSMV	YKEPJO
M	FNQZO	XAPYV	GWJTL	RSHBK	UCEMDI

PRACTICAL EXERCISE NO. 1

TACTICAL MAP REVIEW AND TACTICAL FLIGHT PROCEDURES

LE THANH - 6536 IV

1. In what 100,000-meter grid square does this chart fall?
2. What is the grid zone designator for this chart?
3. A grid course of 060° would be a magnetic course of _____.
4. There are four cultural features located in Grid Square YA8425. They are--
 - a.
 - b.
 - c.
 - d.
5. What are the six-digit coordinates of the highest spot elevation of this map according to the elevation guide?
6. The scale 1:50,000 means--
 - a. 1 inch equals 50,000 inches.
 - b. 1 meter equals 50,000 meters.
 - c. 1 nautical mile equals 50,000 nautical miles.
 - d. All of the above.
7. Can you consider the boundary between Vietnam and Cambodia as authoritative?
8. How do you distinguish between two or more villages with the same name?
9. In Grid Square YA872321, there is a stream that crosses a trail.
 - a. What is the terrain elevation at that point?
 - b. In what general direction does the stream flow?
10. Comparing the elevation between Grid Squares YA8924 and YA9025, what would be considered as the highest elevation?

11. State one reason for filing a flight plan in the tactical area.
12. Compute the MEA's, considering these heights to be the highest obstructions in the corridors.

<u>HIGHEST OBSTRUCTION</u>	<u>MEA</u>
a. 320 meters.	(1) _____
b. 340 feet.	(2) _____
c. 1140 feet.	(3) _____
d. 500 meters.	(4) _____
e. 1890 feet.	(5) _____
f. 800 meters.	(6) _____

13. You are located on the airfield at YA843254. From there you will fly direct to Hill 622 located in Grid Square YA7935. Then proceed direct to the outpost at YA871459. After picking up two wounded personnel, you will then return to the airfield.

The alternate for the first leg is YA871459.

The alternate for the second leg is YA843254.

TAS: 80 knots.

Fuel consumption: 400 pounds per hour.

Use the authentication table in book I.

Use the vegetation height guide in book I.

In your estimate for time, include 10 minutes at each LZ.

- a. What are the three MEA's for this flight?

(1)

(2)

(3)

- b. What are the magnetic headings and distances for this flight?

(1)

(2)

(3)

- c. What is the estimated time en route for the flight?

- d. What is the fuel requirement for this flight?

e. What type of vegetation exists at each of the LZ's?

(1)

~~1. 100% grass, 2. 50% grass, 3. 25% grass~~

(2)

~~1. 100% grass, 2. 50% grass, 3. 25% grass~~

f. What town is near the second LZ?

g. What is the authentication for Eight Yankee?

1. 100% grass, 2. 50% grass, 3. 25% grass

4. 100% grass, 5. 50% grass, 6. 25% grass

7. 100% grass, 8. 50% grass, 9. 25% grass

11. 100% grass, 12. 50% grass, 13. 25% grass

14. 100% grass, 15. 50% grass, 16. 25% grass

18. 100% grass, 19. 50% grass, 20. 25% grass

21. 100% grass, 22. 50% grass, 23. 25% grass

24. 100% grass, 25. 50% grass, 26. 25% grass

29. 100% grass, 30. 50% grass, 31. 25% grass

34. 100% grass, 35. 50% grass, 36. 25% grass

39. 100% grass, 40. 50% grass, 41. 25% grass

44. 100% grass, 45. 50% grass, 46. 25% grass

49. 100% grass, 50. 50% grass, 51. 25% grass

54. 100% grass, 55. 50% grass, 56. 25% grass

59. 100% grass, 60. 50% grass, 61. 25% grass

64. 100% grass, 65. 50% grass, 66. 25% grass

69. 100% grass, 70. 50% grass, 71. 25% grass

74. 100% grass, 75. 50% grass, 76. 25% grass

79. 100% grass, 80. 50% grass, 81. 25% grass

84. 100% grass, 85. 50% grass, 86. 25% grass

89. 100% grass, 90. 50% grass, 91. 25% grass

94. 100% grass, 95. 50% grass, 96. 25% grass

99. 100% grass, 100. 50% grass, 101. 25% grass

104. 100% grass, 105. 50% grass, 106. 25% grass

109. 100% grass, 110. 50% grass, 111. 25% grass

114. 100% grass, 115. 50% grass, 116. 25% grass

119. 100% grass, 120. 50% grass, 121. 25% grass

124. 100% grass, 125. 50% grass, 126. 25% grass

129. 100% grass, 130. 50% grass, 131. 25% grass

134. 100% grass, 135. 50% grass, 136. 25% grass

139. 100% grass, 140. 50% grass, 141. 25% grass

144. 100% grass, 145. 50% grass, 146. 25% grass

149. 100% grass, 150. 50% grass, 151. 25% grass

154. 100% grass, 155. 50% grass, 156. 25% grass

159. 100% grass, 160. 50% grass, 161. 25% grass

164. 100% grass, 165. 50% grass, 166. 25% grass

169. 100% grass, 170. 50% grass, 171. 25% grass

174. 100% grass, 175. 50% grass, 176. 25% grass

179. 100% grass, 180. 50% grass, 181. 25% grass

184. 100% grass, 185. 50% grass, 186. 25% grass

189. 100% grass, 190. 50% grass, 191. 25% grass

194. 100% grass, 195. 50% grass, 196. 25% grass

199. 100% grass, 200. 50% grass, 201. 25% grass

PERFORMANCE OBJECTIVES

ENROUTE AND APPROACH CHARTS

1. KNOWLEDGES:

a. With the aid of DOD FLIP low altitude enroute, arrival, and terminal approach charts, the student will be able to write or state with at least 90 percent accuracy, the meaning and application of symbols depicting—

- (1) Aerodromes.
- (2) Radio aids to navigation and communication boxes.
- (3) Air traffic and airspace information.
- (4) Special use airspace.
- (5) Runways.
- (6) Approach lights, arresting gear, etc.
- (7) Obstructions.
- (8) Approach plan view.
- (9) Approach profile view.
- (10) Miscellaneous symbols.
- (11) Special notes.

b. When given a DOD FLIP low altitude enroute, arrival, and/or terminal approach chart, holding facility/intersection, aircraft landing, and holding track/direction, the student will be able to state or write/diagram without error—

- (1) Holding entry procedures, both standard and nonstandard.
- (2) Holding leg times.
- (3) Crosswind correction.

2. SKILLS: With the aid of DOD FLIP low altitude enroute, area, and terminal approach charts, the student will be able to work a performance check and/or practical exercise with 90 percent accuracy.

STUDENT OUTLINE

ENROUTE AND APPROACH CHARTS

1. Aerodromes (enroute chart).

a. Aerodrome information.

b. Runway information.

2. Radio aids to navigation and communication boxes.

a. Navigation aids.

b. Radio aids to navigation data boxes.

c. Air-ground communication boxes.

3. Air traffic and airspace information.

a. Route data.

b. Reporting points.

c. Boundaries.

d. Airspace information.

e. Miscellaneous.

4. Special use airspace.

5. Description and purpose of DOD FLIP approach charts.

6. Arrangement of the approach charts in FLIP.

7. Chart border information.

8. Approach chart plan view.

9. Approach chart profile view.

10. Landing minima.

MDA

high above touchdown

11. Aerodrome information.

transition fix (area, course, dista)

weather min in parentheses (used for planning purposes)
landing min (know the type of approach) and read
the min alt. and RVR.

12. Holding procedures.

a. When required.

b. Clearance.

c. Pattern. standard (right hand turns)

d. Entry. descent (within 30°) of holding nose
parallel
taxiing (optional)

e. Crosswind correction.

then 10° hold twice the amount in the off side
~~000-000~~ ⁰²⁵ ~~025~~ 56°
~~025 A 280~~ 75° left
 100° right 000 1920
000

13. Practical exercise.

PRACTICAL EXERCISE NO. 1ENROUTE AND APPROACH CHARTS

1. Airways and airspace within the conterminous United States shown on the low-altitude enroute charts are effective up to, but not including, 18000 feet (MSL).
2. A flight from Salt Lake City to El Paso, Texas, would require enroute chart (EC) numbers L-4 L-5 L-7.
3. What, if any, area charts would be required?
4. Tucumcari, New Mexico, is in the _____ time zone. (L-4, panel H)
5. What is the variation at Tucumcari, New Mexico?
6. What ARTCC controls IFR enroute traffic at Tucumcari, New Mexico?
7. What is the ARTCC sector remote site name?
8. What UHF frequency is used for low-altitude communications? (Use IFR-S.)
9. What Flight Service station communication frequencies, if any, are available at Tucumcari, New Mexico? (Use map legend.)
10. What is the distance from Texico VORTAC to Anton Chico VORTAC?
11. What stations are used to establish FIELD Intersection?
12. What is the MEA between Texico and FIELD Intersection?
13. What is the distance and magnetic direction from Tucumcari, New Mexico VORTAC direct to Roswell, New Mexico VORTAC?
14. Is R-5105 joint- or sole-use restricted airspace?
15. Is an instrument approach available at Ft. Sumner Municipal Airport? (Panel H)
16. What is the frequency of Cannon navigational aid? (Panel H)
17. Is voice transmitted over Cannon navigational aid frequency?
18. What must you do to comply with the minimum crossing altitude at SOCORRO VORTAC (L-4, panel G)?
19. List two places where approach control and tower communication frequencies are listed.
 - a.
 - b.

20. If ILS is available at an airport, how is this shown on the enroute chart?

21. List three places where GCA availability is shown in FLIP?

- a.
- b.
- c.

You are flying southwest on V-20 to Mobile, Alabama (EC L-18, panel E), with a heading of 215° , 4,000 feet altitude, and receive a clearance to hold west of Mobile VOR on the 231 radial. Left turns. EAC ILS Runway 14 Bates Field at 30 minutes after the hour.

22. Upon initial station passage, to what heading should you turn (regular entry; not teardrop)?

23. How long should you hold this heading?

24. At the end of the initial outbound timing, in what direction should you turn?

25. Upon reaching the VOR, which direction should you turn (left, right) to what heading (_____), for what time (_____)?

26. Established in the holding pattern, the inbound heading required to hold the course is 060° . To what heading should you turn for the outbound leg?

27. At 30, you are cleared for an ILS Runway 14 approach. Upon reaching the LOM, to what heading should you turn?

28. When may you begin descending out of 4,000?

29. What is the distance from the LOM to missed approach?

30. What is the longest runway at Bates Field? How many feet are not usable?

PRACTICAL EXERCISE NO. 1 - KEY

ENROUTE AND APPROACH CHARTS

1. 18,000.
2. L-7, L-5, L-4.
3. None.
4. Mountain standard.
5. 12° E.
6. Albuquerque.
7. Tucumcari.
8. 319.2 (IFR supplement under Albuquerque Center).
9. 122.2, 122.1R, 122.6, 123.6, 255.4 (Shadow Box, EC Legend).
10. 115 nautical miles.
11. Texico (TXO, 112.2, 278°) and Tucumcari (TCC, 113.6, 170°).
12. 6,500.
13. 121 nautical miles, 193° .
14. Joint-use (controlled airspace shading).
15. No (brown airport symbol).
16. Channel 104.
17. No. (TACAN channels do not transmit voice signals.)
18. 10,000 feet going west on V264.
19. Instrument approach charts, IFR supplement (VFR supplement for VFR only towers).
20. Paper airplane-type symbol with point at airport symbol. Larger ILS course diagram indicates ILS availability plus airway fix function.
21. Enroute charts, approach charts, IFR supplement.
22. 231° .
23. 1 minute.

24. Right.

25. Left, 231° , 1 minute.

26. 213° (9° R doubled in opposite direction).

27. 320° (fly depicted procedure unless otherwise specified or directed).

28. Now.

29. 4.6 nautical miles.

30. Runway 14 (7,800 feet). 1,000 feet is not usable on Runway 32.

PRACTICAL EXERCISE NO. 2

ENROUTE AND APPROACH CHARTS

SITUATION I

Use Fort Rucker, Alabama approach chart VOR Runway 6.

1. The frequency used for the Cairns VOR is _____ and the three-letter identifier is _____.
2. The field elevation at Cairns is _____ feet.
3. The longest runway at Cairns Army Airfield is _____ feet long and _____ feet wide.
4. _____ feet MSL is the minimum altitude authorized for completion of the procedure turn.
5. At 80K on final, where or when is the missed approach started?
6. You would climb to what indicated altitude if you executed a missed approach?
7. You would climb out on the _____ radial to _____ for a missed approach on this facility.
8. The transition from Opp Intersection to the approach fix is MEA _____; course, _____ and distance, _____.
9. Procedure turn must be completed _____ of the published approach course and within the _____ circle.

SITUATION II

Use Memphis Metropolitan approach chart ADF-1/ILS Runway 9.

10. What approach lighting systems are there on the Memphis Metropolitan Airport?
11. You are arriving in the Memphis area from the east. You would expect to contact Memphis Approach Control on _____ UHF.
12. The distance from the Kerrville Intersection to the outer compass locator (LOM) is _____ miles.
13. The airport elevation at Memphis Metropolitan Airport is _____ feet.
14. The inbound magnetic bearing to the LOM from the Kerrville Intersection is _____.

15. What is the identifier of the outer marker?
16. What is the identifier of the LOM?
17. The frequency of the middle marker is _____, and it is identified by _____.
18. At 70K on final, the time from the final fix inbound is _____ minutes and _____ seconds.
19. The _____ is 731 feet MSL, and the _____ is 400 feet AGL.
(Straight-in ADF.)

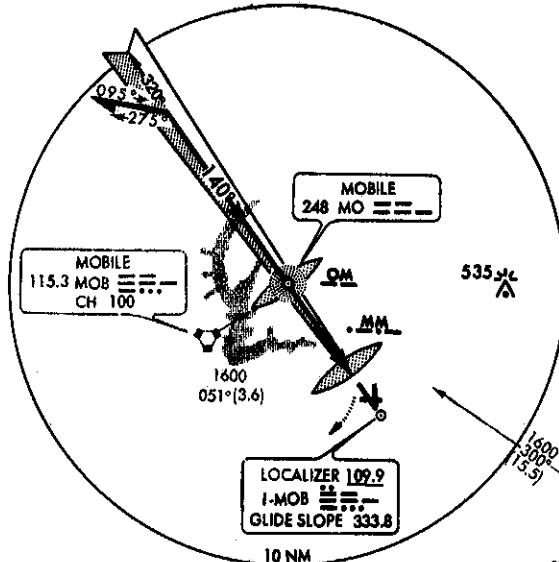
SITUATION III

Use the Tallahassee Municipal LOC (BC) Runway 18 approach chart.

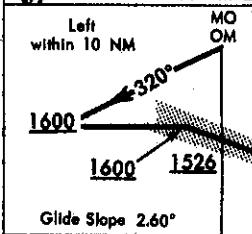
20. You are cleared for an LC (BC) Runway 18 approach, landing Runway 9. What are your approach minimums? (Rotary wing.)
21. What is the MDA?
22. What is the final approach fix?
23. Inbound on final, your vertical needle is deflected to the blue section of the indicator (left of center), you should correct to the (right - left)?
24. Inbound from Havana Intersection, what is indicated in regard to the procedure turn?
25. The highest obstruction on this chart is _____ feet.
26. What are the map coordinates of the TLH Airport?
27. Which would be the most acceptable runway to use for night IFR operations?
28. What is the localizer frequency?
29. You would contact Tallahassee tower on _____ UHF.

PRACTICAL EXERCISE NO. 2 - KEY
ENROUTE AND APPROACH CHARTS

1. 111.2, OZR.
2. 305.
3. 5,000, 150.
4. 1,700.
5. Missed approach begins at the VOR.
6. 2,000 feet.
7. 165, Hartford Intersection.
8. 2,000, 088, 23.8 nautical miles.
9. north, 10-nautical-mile.
10. U.S. Standard for Runway 9; IVALA for Runway 35; and VASI for Runway 27.
11. 338.3.
12. 19.6 nautical.
13. 331.
14. 192°.
15. Dashes.
16. ME.
17. 75 MegaHertz, dots and dashes.
18. 3, 36.
19. MDA, ceiling.
20. 500-1/2.
21. 500.
22. Joseph Intersection.
23. Right (back course).
24. Procedure turn is not authorized.



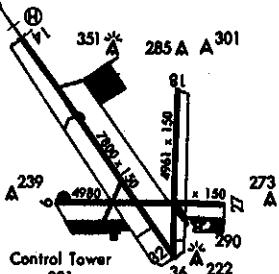
ILS RWY 14


22
AI-267 (FAA)

BATES FIELD/MOBILE CGAS
MOBILE, ALABAMA

MOBILE APP CON
269.3 118.5
BATES TOWER
239.0 122.4R
GND CON
348.6 121.9

EMERG SAFE ALT 100 NM 2600



MISSED APPROACH
Right to 1800 track
180° from RBn
within 15 NM

MIN SAFE ALT

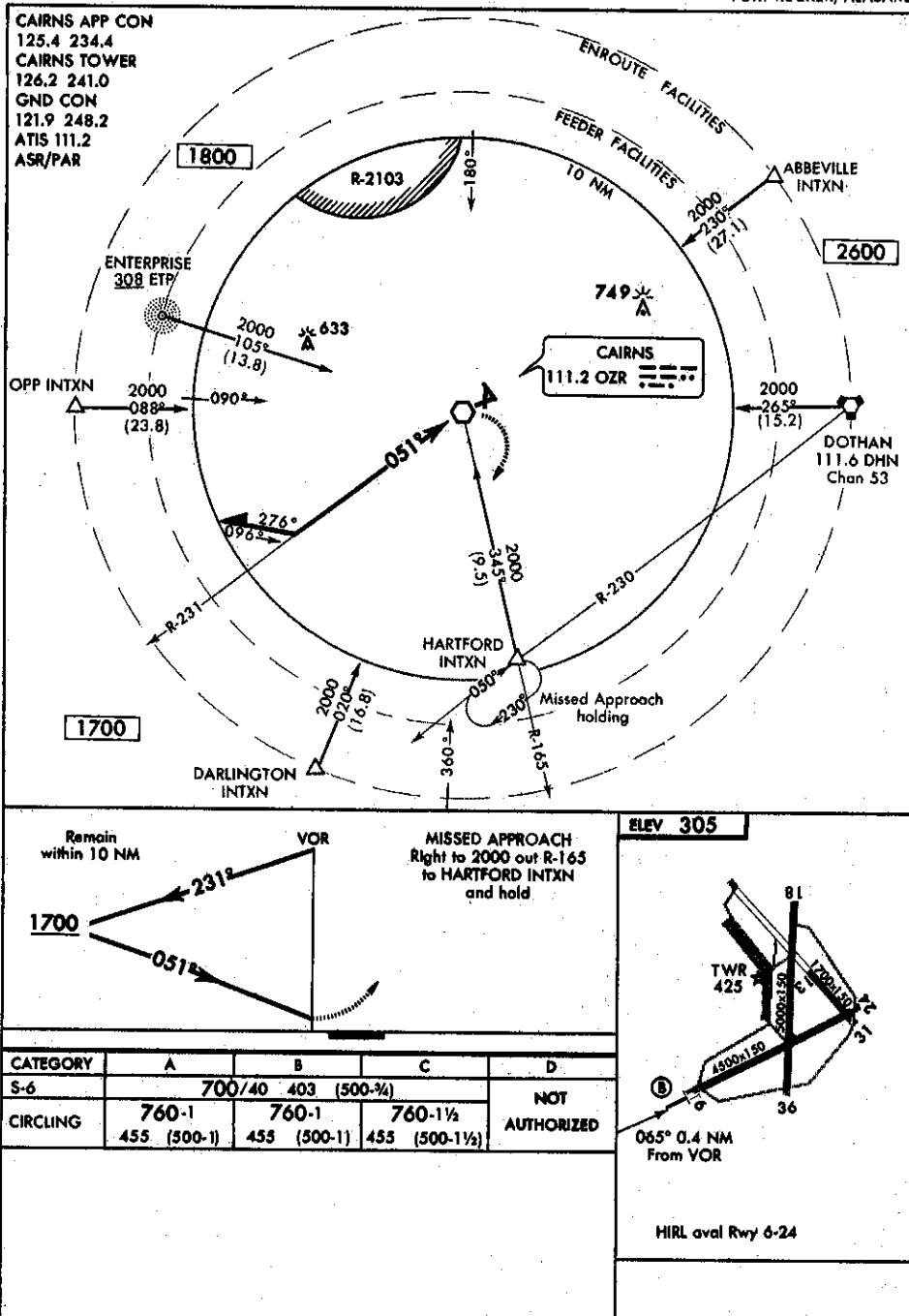
FIELD ELEV 218

140° 4.6 NM
From RBn/OM

NOTE: 6800' available
landing runway 32

ILS RWY 14

30°41'N-88°14'W


22

MOBILE, ALABAMA
BATES FIELD/MOBILE CGAS

VOR RWY 6

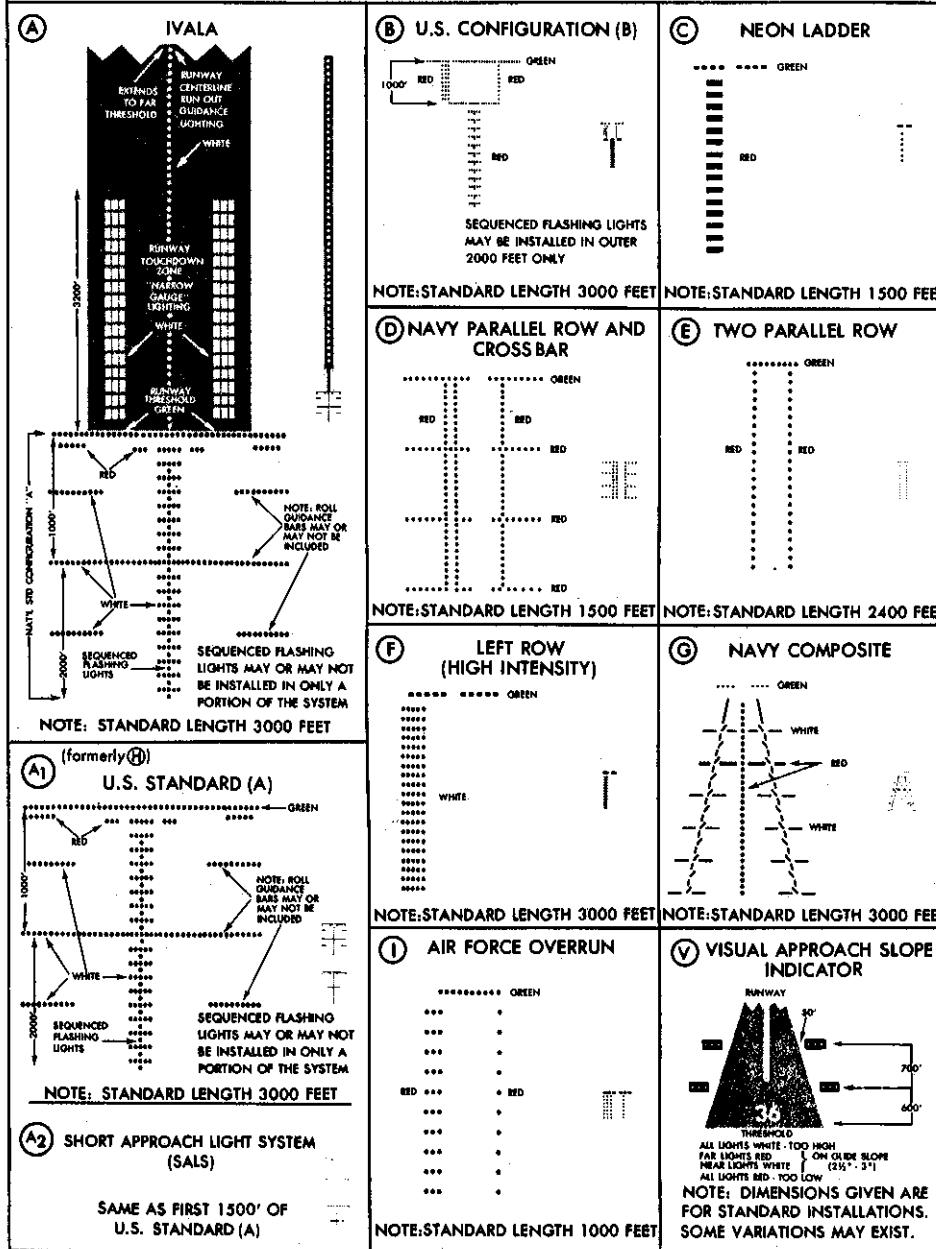
44
AL-577 (US Army)

CAIRNS AAF
FORT RUCKER, ALABAMA

VOR RWY 6

31°16'N 85°43'W

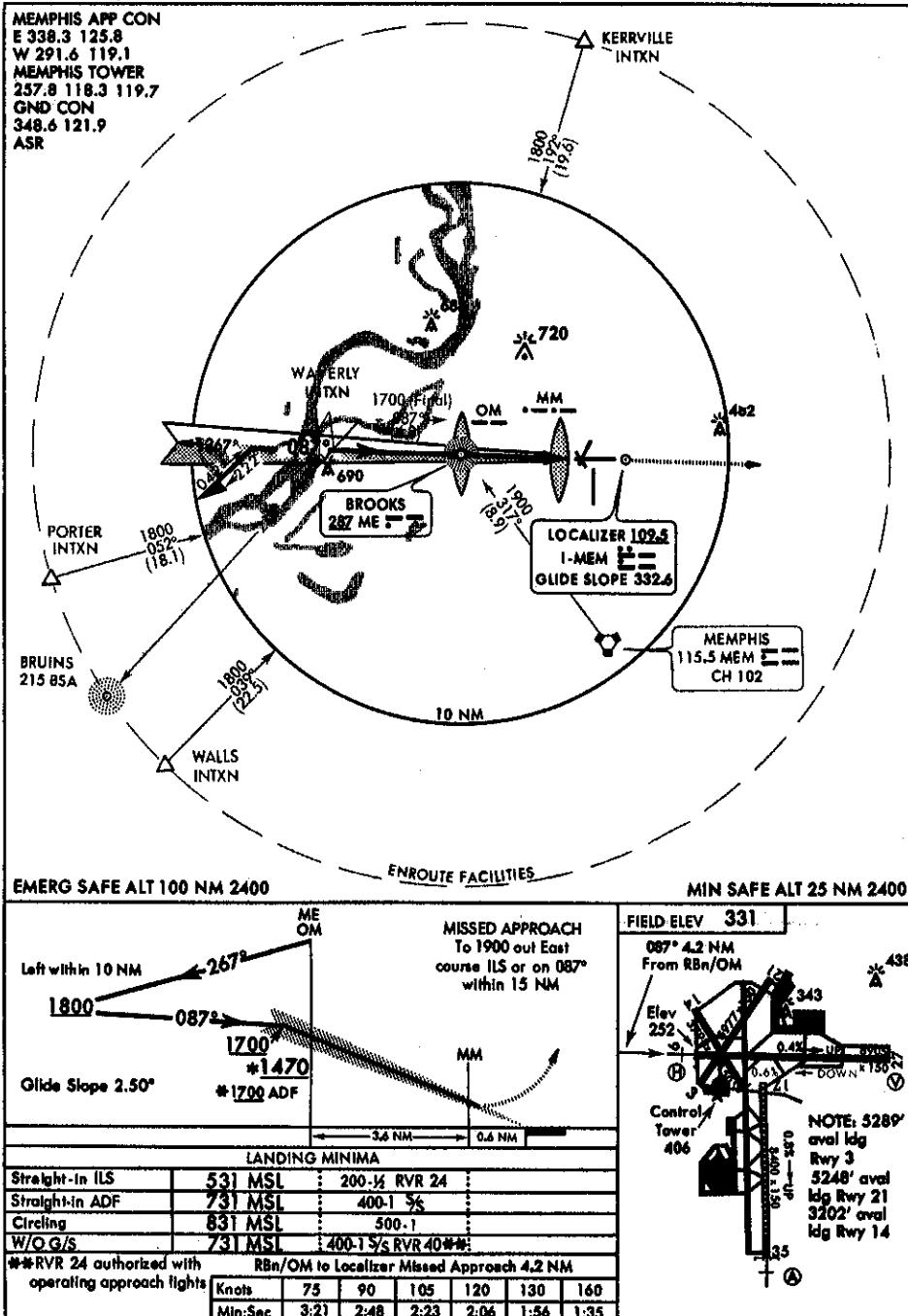
44


FORT RUCKER, ALABAMA
CAIRNS AAF

LEGEND

INSTRUMENT APPROACH PROCEDURES (CHARTS)
APPROACH LIGHTING SYSTEMS - UNITED STATES

Actual length will be shown on Airport Diagram for any system, or portion thereof, not conforming to standard lengths listed on this page.


Each approach lighting system indicated on Airport Diagrams will bear system identification letter (A, B, etc.) indicated in legend.

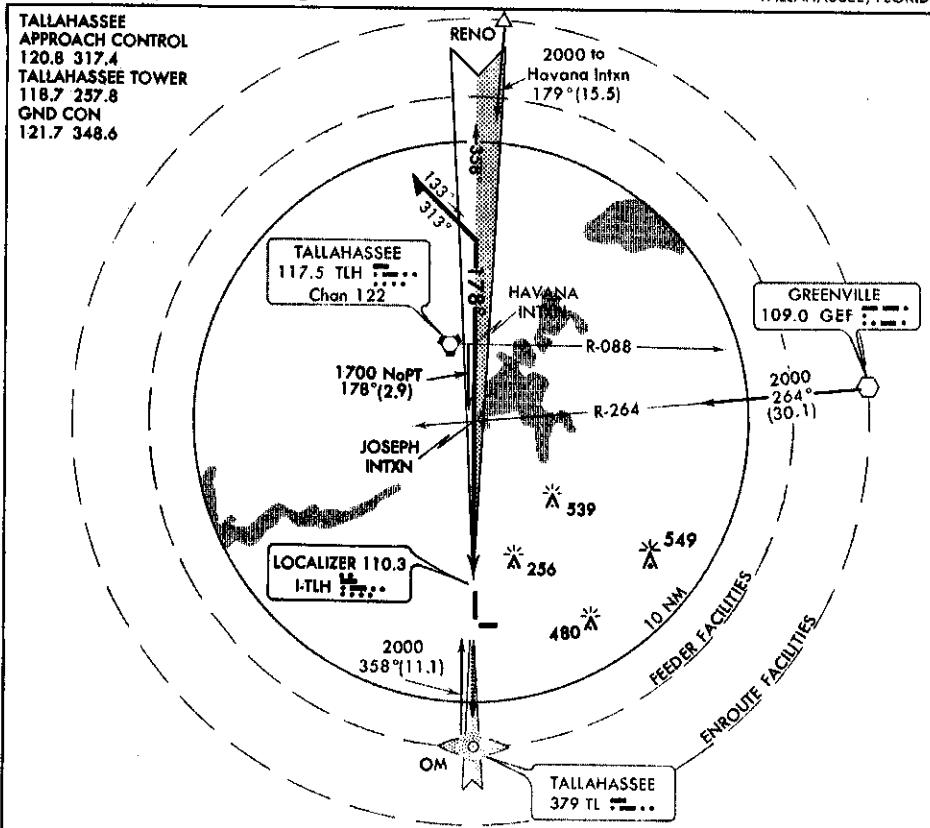
ADF-1/ILS RWY 9

147
AL-253 (FAA)

MEMPHIS METROPOLITAN
MEMPHIS, TENNESSEE

ADF-1/ILS RWY 9

35° 03'N 89° 59'W



147

MEMPHIS, TENNESSEE
MEMPHIS METROPOLITAN

LOC (BC) RWY 18

183
AL-5048 (FAA)

TALLAHASSEE MUNI
TALLAHASSEE, FLORIDA

LOC (BC) RWY 18

30°24'N-84°21'W

183

TALLAHASSEE, FLORIDA

TALLAHASSEE MUNI

L L L L L L L L L L L L L L

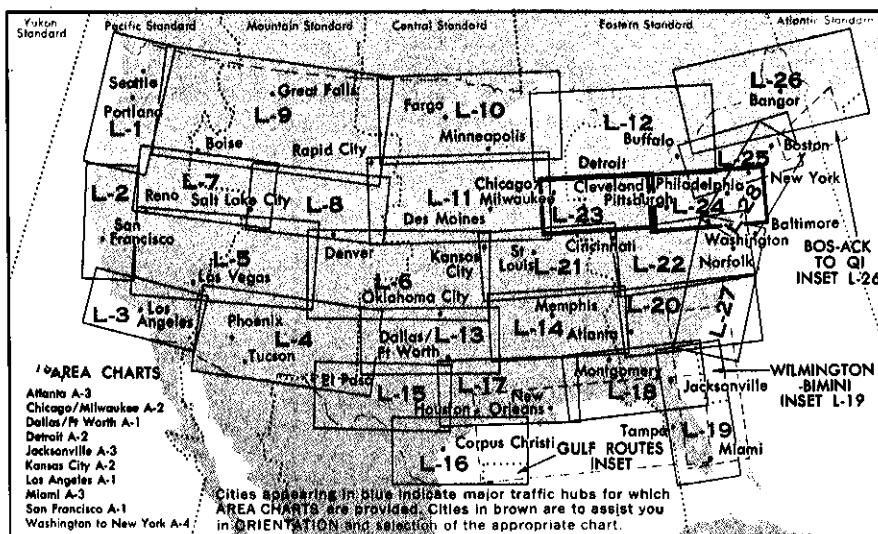
← L-24
1"=10 NM

L-23 →
1"=10 NM

UNITED STATES GOVERNMENT
FLIGHT INFORMATION PUBLICATION
ENROUTE LOW ALTITUDE – U. S.

For use up to but not including 18,000' MSL

EFFECTIVE 0801Z **14 NOV 1968**
TO 0801Z **12 DEC 1968**


PUBLISHED IN ACCORDANCE WITH INTER-AGENCY AIR CARTOGRAPHIC COMMITTEE
SPECIFICATIONS AND AGREEMENTS, APPROVED BY:

DEPARTMENT OF DEFENSE * FEDERAL AVIATION ADMINISTRATION * DEPARTMENT OF COMMERCE

UNITED STATES

14 NOV 1968

L
23

CORRECTIONS, COMMENTS AND/OR PROCUREMENT

Refer to General Information Section FLIP Enroute Supplement

Compiled by Coast and Geodetic Survey, ESSA, U. S. Department of Commerce

Lithographed by CARTECH, Inc., Quincy, Ill.

for the Department of Defense

USAF Aeronautical Chart and Information Center, St. Louis, Mo.

L-23

PANELS
ABCD

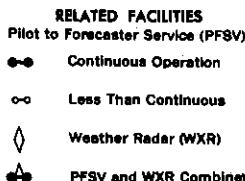
1"=10 NM

UNITED STATES GOVERNMENT
FLIGHT INFORMATION PUBLICATION

L-24

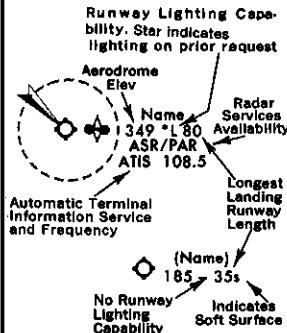
PANELS
EFGH

1"=10 NM


ENROUTE LOW ALTITUDE - U. S.

For use up to but not including 18,000' MSL

LEGEND


AERODROMES

Aerodromes/Seadromes shown in **BLUE** have an approved Low Altitude Instrument Approach Procedure published. The DOD FLIP Terminal contains only those shown in **DARK BLUE**. Aerodromes/Seadromes shown in **BROWN** do not have a published Instrument Approach Procedure.

ILS Availability

1. Parentheses around aerodrome name indicate military landing rights not available.
2. Aerodrome elevation given in feet above or below mean sea level.
3. Length of longest runway given to nearest 100 feet with 70 feet as the dividing point (Add 00).
4. Aerodrome symbol may be offset for enroute navigation aids.
5. Pvt: Private use, not available to general public.

RADIO AIDS TO NAVIGATION AND COMMUNICATION BOXES

RADIO AIDS TO NAVIGATION

VHF/UHF Aids are depicted in **BLUE**.
LF/MF Aids are depicted in **BROWN**.

LF/MF Range with simultaneous Voice Signal Capability (Solid tip in "N" Quadrant)

LF/MF Range without simultaneous Voice Signal Capability

LF/MF Range Course
Feathered side indicates "A" Quadrant

LF/MF Non-directional Radiobeacon or Marine Radiobeacon

UHF Non-directional Radiobeacon

Compass Locator Beacon

Console Station

Marker Beacon

ILS Localizer Course with ATC Function, Feathered side indicates Blue Sector

RADIO AIDS TO NAVIGATION DATA BOXES

Abnormal Status Underprint for Affected Data, e.g., TO BE CMSN, SHUT DOWN, MAY BE CMSN, etc.

DME SHUT DOWN
DME Chan 100

NAME
NAM = 000.0 (T)
MN = 000

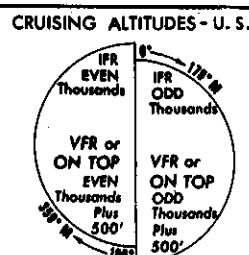
Combined VHF/UHF and LF/MF data

(T) Frequency protection
Usable range at 12,000'-25 NM

* Operates less than continuous or On-Request

NAME
NAM = *000

Underline indicates No Voice Transmitted on this frequency


TACAN channels are without voice but are not underlined

Norfolk Weather Radio

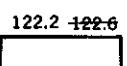
IDENT 000

U.S. Weather Station with Voice Communication

Commercial Broadcast Station


CRUISING ALTITUDES - U. S.

AIR/GROUND COMMUNICATION BOXES

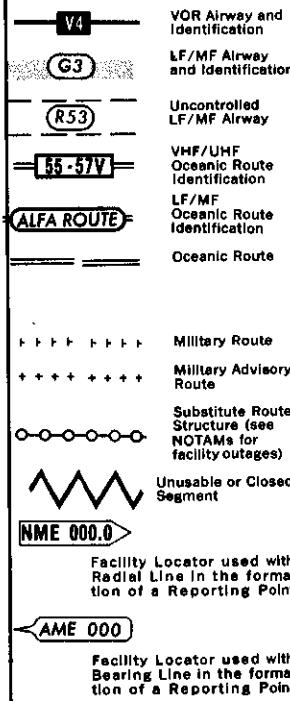

Shadow box indicates Standard FSS A/G Voice Communications freqs 122.1R, 122.6, 123.6 and 255.4 are available at all altitudes without terrain interference.

Plain box, with freqs, indicates all Standard FSS freqs are not available, or are not available at all altitudes, due to terrain interference.

122.1R
This is the best freq to use in the immediate vicinity of the site insuring reception at low altitudes. Other freqs are available from the Controlling FSS named, however, altitude may determine their reception.

WASHINGTON
Controlling FSS name
122.2 122.6
All Standard FSS freqs except the crossed out 122.6 are available at this location. 122.2 and 122.3 are additional FSS frequencies available at selected locations.

Plain box, without frequencies, indicates no Standard FSS frequencies available.


Flight Service Station (FSS)
Remote Communications Outlet (RCO)
Limited Remote Communications Outlet (LRCO)

THE U. S. FEDERAL GOVERNMENT DISCLAIMS RESPONSIBILITY FOR NON-FEDERAL NAVIGATIONAL FACILITIES

AIR TRAFFIC SERVICES AND AIRSPACE INFORMATION

AIRWAY AND ROUTE DATA

VHF/UHF Data is depicted in **BLUE**; LF/MF depicted in **BROWN**

038 → Radial Outbound from a UHF/VHF Radio Aid

036 → Bearing Inbound to a LF/MF Radio Aid

123 Total Mileage between Compulsory Reporting Points and/or Radio Aids

23 Mileage between other Reporting Points, Radio Aids, and/or Mileage Breakdown

23 VOR Changeover Point Giving mileage to Radio Aids (Not shown at mid-point locations)

42 Mileage breakdown

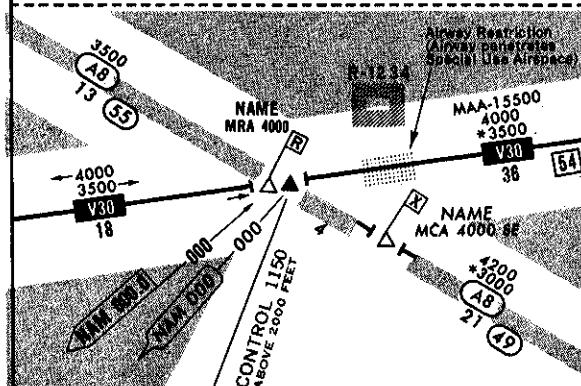
26 Denotes DME fix (Distance same as route mileage)

15 Denotes DME fix (Encircled mileage shown when not otherwise obvious)

MAA-15500 MAA (Maximum Authorized Altitude)

3500 MEA (Minimum Enroute Altitude)

3500 *MOCA (Minimum Obstruction Clearance Altitude)


*3000 Canada only - Direction of Flight indicator. (Shown when exception to Cruising Alt Diagram.)

→ EVEN MEA, MAA and/or MOCA Change at other than Radio Aids to Navigation

→ MRA (Minimum Reception Altitude)

→ MCA (Minimum Crossing Altitude)

EXAMPLE OF GROUPING

REPORTING POINTS

▲ Compulsory Reporting Point
△ Non-Compulsory Reporting Point

→ Offset Arrows Indicate Facility Forming a Reporting Point. Toward LF/MF, Away from VHF/UHF

BOUNDARIES

Ⓐ Altimeter Setting Change
↔ Altimeter Setting Change when not otherwise defined

ARTCC Air Route Traffic Control Center (ARTCC)

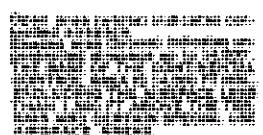
NAME ARTCC Remoted Sites

Name Flight Information Region (FIR)

ADIZ Air Defense Identification Zone (ADIZ)

CFR Combined FIR and ADIZ

OCEAN Ocean Control Area (CTA)


— Control Zone

— Int'l Boundary (Omitted when coincident with ARTCC or FIR)

Area of Enlargement (Contains only data for through flights). See Area Charts for complete data

— Official Time Zone

AIRSPACE INFORMATION

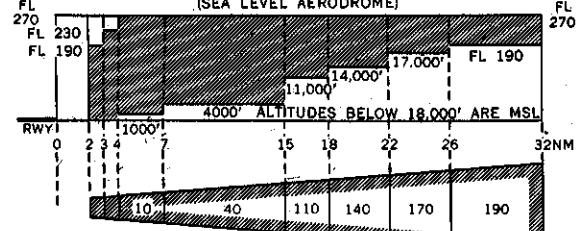
MISCELLANEOUS

7°E Isogonic Line and Value

Within the U.S., non-Federal owned/operated radio aids to navigation are annotated to indicate whether operated by State, City, County, Private, etc.

ALL MILEAGES ARE NAUTICAL EXCEPT AS NOTED

ALL RADIALS AND BEARINGS ARE MAGNETIC


ALL ALTITUDES ARE MSL UNLESS OTHERWISE STATED

ALL TIME IS GREENWICH MEAN (STANDARD) TIME (GMT)

• DURING PERIODS OF DAYLIGHT SAVING TIME (DST), EFFECTIVE HOURS WILL BE ONE HOUR EARLIER THAN SHOWN

SPECIAL USE AIRSPACE

RESTRICTED AREA/MILITARY CLIMB CORRIDOR PROFILE (SEA LEVEL AERODROME)

CAUTION: ALTITUDES AND MILEAGES VARY WITH EACH CLIMB CORRIDOR, CONTACT APPROPRIATE CONTROL.

For VFR flight through Military Climb Corridors, civil aircraft contact approach control on 122.5 or the frequency shown within the area on the face of the chart. Military aircraft consult FLIP Enroute Supplement for frequencies and FLIP Planning Section II for procedures.

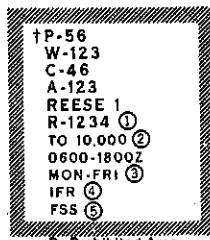
① Operating Time. When continuous no time is shown.

Days: Sunrise to Sunset

Nights: Sunset to Sunrise

Hours: Given in GMT, e.g., 0600-1300Z

Mon-Fri: Indicates area does not exist on Sat. or Sun.


1 Mar-15 June: Indicates area in use only through dates given.

② Weather Conditions during which the area is in operation. When continuous no weather is shown. VFR: Used only during VFR Conditions.

IFR: Used only during IFR Conditions.

③ Voice Call of Controlling Agency for enroute clearance through area. No A/G unless indicated.

† Indicates complete information in tabulation on front panel

SPECIAL USE AIRSPACE WILL INCLUDE:

① Area Identification. In Canada area ident is preceded by the letters CY (CANADA) followed by a number (PROVINCE).

② Effective Altitude of airspace is shown up to but not including 18,000'. When the airspace encompasses all altitudes in the low altitude structure, no altitude will be shown.