

PROGRAMMED TEXT

NAVIGATIONAL COMPUTER

WIND FACE SIDE

AM-62

MARCH 1968

**UNITED STATES ARMY
PRIMARY HELICOPTER SCHOOL
FORT WOLTERS, TEXAS**

PROGRAMMED TEXT

PROGRAM TEXT

FILE NO:

AM-62

PROGRAM TITLE

Navigational Computer
Wind Face Side

POI SCOPE: Use the navigation computer to plot known values such as wind, true course, ground speed, track, true airspeed, and true heading. Solve for wind, ground speed, drift correction, and true heading.

INSTRUCTOR REFERENCES:

TM 1-225 Ch. 8, Sec III

PREPARED BY:

CPT D. L. Yost
FLT SUBJ BR

DATE:

January 1968

REVISED BY:

DATE:

APPROVED BY

FREDERICK B. WELLER, LTC
Chief, TP&A

DATE:

June 1968

TABLE OF CONTENTS

PROGRAMMED TEXT**FILE NO:** AM-62**PROGRAM TITLE:**

Navigational computer - Wind Face

CONTENTS	PAGE NUMBER
1. PREFACE _____	iii
2. PERFORMANCE OBJECTIVES _____	iv
3. PROGRAM _____	1
a. _____	
b. _____	
c. _____	
d. _____	
e. _____	
4. SELF EVALUATION EXERCISE _____	29
5. ANSWERS TO SELF EVALUATION EXERCISE _____	34
6. ITEMS TO BE ISSUED WITH PROGRAM _____	
7. _____	
8. _____	
9. _____	
10. _____	

PREFACE

Now that you have learned the slide rule side of the computer, it will be easier to learn the wind face side.

It is necessary that you know how to solve problems on the computer to accurately plan any flight.

Wind has a very definite affect on any aircraft, and must be considered when planning a flight. The wind face side of the computer enables you to do this quickly and accurately.

~~The last page of the program booklet has three diagrams on it. You should tear it out at this time and refer to it as necessary as you progress through the program.~~

Start with frame 1 and work each frame in succession. Each frame will usually ask you a question. The correct answer is printed on the top of the next frame. If you were incorrect, turn back and restudy the information before continuing on to the next frame. When you have finished the text, complete the self evaluation exercise. Now begin by studying the performance objectives on page iv.

PERFORMANCE OBJECTIVES

Upon completion of this programed text, you will be able to use the wind face side of the computer to solve problems for:

1. Wind direction and speed
2. Track or true course (TR or TC)
3. True heading
4. True airspeed (TAS)
5. Ground speed (GS)

to an accuracy of 2° in heading or 2 knots in speed.

FRAME 1

Study figure 2 of the diagrams.

The center line on the sliding grid passes directly under the true index and the small circle in the center of the plotting disc is called the gromet. on pg 57 AM-61

TURN TO FRAME 2 PAGE 3

ANSWERS: TH = 176°
GS = 94K

Remember the tolerances are 2° in heading and 2 knots in speed.

FRAME 15

Suppose you plotted a TC of 194° and will fly a TAS of 75K on this course. A check with the weather forecast shows a wind of 322°/14k expected. What will your TH be to fly your intended path (TC)? Also your GS.

- a. What do you always plot first? *wind*
- b. Where does TC always go? *under track index*
- c. Where does the wind dot always go? *over true air speed*

$$TC = 202^\circ$$
$$GS = 183 K$$

TURN TO FRAME 16 PAGE 4

ANSWERS: true
grommet

FRAME 2

Assemble your computer as in figure 2 of the diagrams found ~~in the~~ back of the booklet. in AM-61

The maximum speed arc on this side of the sliding grid is 270. Each heavy speed arc represents speeds at 10 knots intervals. The lines in between represent speeds at 2 knot intervals.

TURN TO FRAME 3 PAGE 5

ANSWERS: TH = 202°

GS = 83k

- a. Wind
- b. True Index
- c. Over True Airspeed

FRAME 16

Think you know it now? Find TH and GS on the three problems below.

<u>WIND</u>	<u>TC</u>	<u>TAS</u>	<u>TH</u>	<u>GS</u>
a. 200°/12k	185°	105k	<u>187°</u>	<u>94k</u>
b. 140°/15k	315°	85k	<u>313°</u>	<u>100k</u>
c. 190°/43k	247°	110k	<u>227°</u>	<u>80k</u>

ANSWER: 2 knot intervals

FRAME 3

In planning or during a flight, you must know the ground speed in order to be able to figure your flight time and how much fuel will be needed. Ground speed is always found under the ground

Note figure 3 on the back page of this booklet.

ANSWERS: a. TH = 187° GS = 94k
b. TH = 313° GS = 100k
c. TH = 227° GS = 80k

FRAME 17

Let us vary the problem slightly so you can find the TH and TAS. You must fly the next leg at a GS of 85k in order to reach a check point at a correct time. Therefore, you must find the TAS that will give you this GS with a given wind.

For example: Wind - $210^\circ/30\text{k}$
TC - 170°
GS - 85k

As before, the first step is to plot the wind. The second step is to put TC under the true index. The third step, which is different, is to plot GS under the grommet since GS is known, but the TAS is not known. TAS falls under the wind dot. Now read TH (as before) 180° and TAS 110 k. (Read TAS under wind dot.)

ANSWER: grommet

FRAME 4

Solve for TH and GS first. The wind (W/V) is $270^\circ/20\text{k}$, True Course (TC) is 310° , and True Airspeed (TAS) is 150k .

If given, always plot the wind first. Rotate the compass rose until the wind direction is under the true index. You now have 270° under the true index.

Go to the next frame and plot the speed of the wind.

ANSWERS: TH = 180°
TAS = 109k

FRAME 18

With a wind of 135°/22k, a desired GS of 70k and TC of 095° what will your TH and TAS be?

104

Remember - Plot the wind

Plot TC

Plot GS

a. TAS = 88 K
b. TH = 104 °

ANSWER: 270°

FRAME 5

To measure the speed of wind, move the grid card so the grommet is over any 80, 90, 100, or 110 heavy speed arc. Count 20 knots up the center line from the grommet and place a small dot. Not a mark, but a dot. Hold the pencil straight and press downward. Circle the small dot (.) so it can be easily found.

You have now plotted the wind and this dot is called a wind dot. Does this look like figure #3 on page 58 of AM-61?

ANSWERS: a. 88k
b. 104°

TAS is always found under the wind dot.

FRAME 19

You know the wind to be forecast at 324°/23k, and you determine your GS will have to be 70k to land on the objective on time. You measure your TC, finding it to be 044°. You now have to compute the TH and TAS needed to maintain the 70k GS.

As always, you plot the wind first, then place TC at the true index.

a. Where does GS always go?

Now simply read TAS and TH from the wind dot.

b. TH = 27°

⁴⁴
-17

27

c. TAS = 78K

ANSWERS: wind

Yes. If your computer does not look similar to figure 3, rework the frame.

FRAME 6

You have now plotted two of the four types of known information. The next step is to plot TC (310°).

The rule is to always plot TC under the true index.

Now you must rotate the compass rose so that 310 $^\circ$ is under the true index.

ANSWERS: a. Under the grommet

b. TH = 027°

c. TAS = 78k

TAS is always found under the wind dot.

FRAME 20

Solve the next three problems for practice. All we allow is 2° heading and 2 knots in speed.

<u>WIND</u>	<u>TC</u>	<u>GS</u>	<u>TAS</u>	<u>TH</u>
a. $090^\circ/15k$	060°	75k	<u>$87K$</u>	<u>65°</u>
b. $330^\circ/20k$	212°	82k	<u>$75K$</u>	<u>225°</u>
c. $292^\circ/18k$	284°	90k	<u>$108K$</u>	<u>285°</u>

ANSWER: TC (310°)

You are not done; so do not solve for TH and GS yet. Make sure your wind dot is very small so that your answer will be as accurate as possible.

FRAME 7

Be sure to have TC (310°) under the true index.

The last thing to plot is TAS (150k). The rule is to always place the TAS under the wind dot. Slide the grid card up or down until the wind dot is directly over the 150 knot speed arc. Not the grommet, but the wind dot over the 150 knot arc.

Do not move it as both TH and GS can be read. What is your GS? 137k

ANSWERS: a. TH - 065° TAS - 88k
b. TH - 225° TAS - 75k
c. TH - 285° TAS - 108k

FRAME 21

Of the six factors, you have solved TH, TAS, and GS. TC (intended path) will be known or you can find your TR (track is your actual path) on the map. For wind solution, use TR since you have not flown where you intended due to the wind.

Suppose on another leg you were unable to get an accurate forecast wind or the winds had changed. You must now learn to solve for wind.

Go to the next frame.

ANSWER: 134k

Remember the rule. GS is always found under the grommet.

FRAME 8

In measuring degrees between the wind dot and the center line to find drift correction, you will find that you use the straight converging lines. These are called heading lines and determine the number of degrees the wind dot is, left or right of the center line.

Notice that above the 150 knot speed arc each heading line equals one degree. Below 150 knots, each line equals 2 °.

Given: TR - 330°
GS - 100k
TH - 340°
TAS - 120k

Normally you plot the wind first, but this is unknown. The first step is to plot TR under the true index. Second, GS always goes under the grommet. Third, to find DC, find the difference between TH and TR and apply this to the left or right of the center line. Since TR is the center line, TH will be 10° right of the center line.
(left or right)

ANSWER: 2°

FRAME 9

In finding TH, you will find that TH must be computed using the wind dot. The wind dot is 5° left of the center line and this 5° is your Drift Correction (DC).

In subtracting 5° (DC) from 310° (TC), we find the TH will be 305° . If the wind dot has been 10° to the right of the center line (310°), TH would have been 320° .

ANSWER: right

FRAME 23

You know the wind dot will be on a heading line 10° to the right, but where on that line? Your TAS is 120 knots and the speed arc crosses the heading line. Put your wind dot where these two lines cross and make the wind dot small.

Go to the next frame.

ANSWER: 320°

FRAME 10

~~An easier method of computing TH is to figure DC drift correction and to the drift correction scale. If you are not sure where the DC scale is located, look at figure 2 AM-61 pg 53~~

Do not move the compass rose again. Since DC is 5° to the left, go 5° left of the true index on the correction scale. TH is on the compass rose directly below the left 5° mark. Again it is 315²⁷₃₇₅ $^{\circ}$.

What would your TH be if the DC was 28° right with a TC of 317° ?
It is 345²⁷₃₇₅ $^{\circ}$.

FRAME 24

To find the wind, rotate the wind dot so it is above the grommet on the center line.

Now you can read under the true index the wind direction of 18 °.

For wind speed, place the grommet over any heavy speed arc and count up to the wind dot. Wind speed is 27 k.

ANSWERS: TH = 305°
TH = 345°

FRAME 11

- a. The wind was plotted first by placing the direction under the true index and plotting the wind speed up from the grommet.
- b. The TC is always placed under the true index.
- c. The TAS is always placed under the wind dot.
- d. The GS is always found under the grommet.
- e. The DC was determined by the number of degrees left of the wind line.

ANSWER: 017°
28k

FRAME 25

Review where the information was found or placed and the sequence in which it was used.

- a. TR was placed under the true index.
- b. GS was placed under the grommet.
- c. The wind dot was placed where the TH and ^{AQS} 120 arc cross.
- d. You read wind direction under the true index and wind speed up from the grommet.

ANSWERS: 1. true index
2. true index
3. wind dot
4. grommet
5. center line

FRAME 12

Practice finding TH and GS. Follow the rules and their sequence.
Always erase the old wind dot before starting a new problem.

Given: Wind - $095^\circ/30k$
TC - 60°
TAS - 120k

Step 1 - Plot the wind direction under true index and count the wind speed up from the grommet. Place a small wind dot and circle it.

Step 2 - Rotate the compass rose so TC is under true index.

Step 3 - Place wind dot over the correct TAS arc and read GS and figure TH.

GS 94 k TH 68 °

ANSWERS: a. true index
b. grommet
c. speed
d. true index, grommet

FRAME 26

Solve for wind if your TR is 220° and TH is 208° . You have been flying 94 knots for TAS and figure for your ground speed to be 80 knots. Your wind is 163 7 22K

First, locate TR under true index.

Second, place GS.

Third, make wind dot where TAS and heading line cross.

Fourth, rotate wind dot and read wind direction and speed.

ANSWERS: GS 95k (under the grommet)
TH 068° (8° right of center line)

NOTE: The computer may be off, so you are allowed a tolerance of 2° in heading and 2 knots in speed.

FRAME 13

Wind - $020^\circ/30k$

TC - 180°

TAS - 120k

Find TH 178° and GS 148° k

Remember to plot the wind first, rotate TC under true index, and place TAS under wind dot.

Be accurate!

ANSWER: $162^\circ/22k$

FRAME 27

Solve the three problems below. When comparing answers make sure they are within tolerance.

<u>TR</u>	<u>GS</u>	<u>TH</u>	<u>TAS</u>	<u>W/V</u>
a. 060°	110k	075°	100k	<u>$176^\circ/29k$</u>
b. 130°	75k	115°	95k	<u>$24^\circ/30k$</u>
c. 025°	87k	033°	95k	<u>$87^\circ/15k$</u>

ANSWERS: TH = 174°
GS = 148k
DC was about $5 \frac{3}{4}^{\circ}$ so you should have rounded it off to
 6° left.

FRAME 14

Determine the TH when given the following information:

TAS = 100k
TC = 165°
Wind = $240^{\circ}/20k$

The TH will be 174° to stay on your TC and GS will be 94 k
as a result of the wind.

If you are confused, go back to frames 13 and 14 to determine
your steps to follow.

STOP RETURN TO FRAME 15 PAGE 2

ANSWERS:

- a. $W/V = 176^\circ/30k$
- b. $W/V = 074^\circ/30k$
- c. $W/V = 086^\circ/16k$

You can now solve for W/V, TH, GS, and TAS.

Congratulations!

CONTINUE TO THE SELF EVALUATION EXERCISE

SELF EVALUATION EXERCISE

1. Find the True Heading (TH) and the Ground Speed (GS).

Given: Wind - $194^\circ/25\text{k}$ 212°
 TAS - 75k 194°
 TC - 212° 18°

<u>TH</u>	<u>GS</u>
a. 216°	$50\text{k} \checkmark$
b. 210°	45k
c. 198°	58k
d. 206°	51k

2. If you were going to fly a TC of 270° at an airspeed (TAS) of 70 knots and told to expect a wind of $340^\circ/12\text{k}$ at your altitude, what TH would you fly to stay on your TC of 270° and what would your GS be?

<u>TH</u>	<u>GS</u>
a. 258°	60k
b. $279^\circ \checkmark$	$65\text{k} \checkmark$
c. 283°	70k
d. 260°	69k

3. Find TH and TAS.

Given: GS - 94k 212°
 TC - 216° 212°
 Wind - $159^\circ/08\text{k}$

<u>TH</u>	<u>TAS</u>
a. 208°	99k
b. 220°	$99\text{k} \checkmark$
c. $212^\circ \checkmark$	99k
d. 210°	89k

4. Suppose you were over RP "A" and you were told to maintain a GS of 80k to RP "B". You had measured a TC of 120° and had winds of $228^\circ/14\text{k}$. What TH and TAS would you fly to maintain a GS of 80k?

<u>TH</u>	<u>TAS</u>
a. 129°	76k
b. 119°	86k
c. 122°	65k
d. 119°	75k

5. Find the wind direction and velocity.

Given: TR - 351°
TAS - 85k
GS - 102k
TH - 002°

a. $129^\circ/25\text{k}$
b. $129^\circ/35\text{k}$
c. $121^\circ/15\text{k}$
d. $102^\circ/20\text{k}$

6. You are on the third leg of your flight and notice that you are off course. You have been flying a TH of 019° at 85 knots (TAS). Locating yourself on the map and drawing a line to your position, you can figure your track of 033° and distance to figure a GS of 93 knots. What is your wind? 19°

a. $264^\circ/20\text{k}$
b. $278^\circ/29\text{k}$
c. $265^\circ/18\text{k}$
d. $275^\circ/23\text{k}$

Solve the following problems.

Given:

Wind 090°/20k

TC 120°

GS 90k

Find:

7. TH

- a. 120°
- b. 090°
- c. 115°
- d. 110°

8. TAS

- a. $108k$
- b. $90k$
- c. $120k$
- d. $75k$

Given:

Wind 020°/30k

TC 180°

TAS 120k

Find:

9. TH

- a. 174°
- b. 160°
- c. 191°
- d. 156°

10. GS

- a. $74k$
- b. $96k$
- c. $145k$
- d. $148k$

Given:

Wind 090°/15k

TC 060°

GS 75k

Find:

11. TH

TAS

- a. 065°
- b. 055°
- c. 060°
- d. 073°

88k

12. Ground speed is always read:

- a. Under the true index
- b. Under the wind dot
- c. Under the grommet
- d. You can't read ground speed on this side of the computer

13. Always plot

- a. the wind first, if its given.
- b. the drift correction first.
- c. TH under the true index.

14. True airspeed is always read

- a. under the true index.
- b. under the grommet.
- c. under the wind dot.

Check your answers on page 34

OUT-OF-CLASS
PRACTICAL EXERCISE
AM-62

	WIND DIR.	WIND SPEED	TRUE COURSE	GROUND SPEED	TRUE HEADING	TRUE AIR SPEED
1.	220°	20	340°	160	<u>347°</u>	<u>151K</u>
2.	50°	15	274°	153	<u>240°</u>	<u>143K</u>
3.	150°	25	183°	135	_____	_____
4.	230°	10	5°	154	_____	_____
5.	70°	20	112°	126	_____	_____
6.	320°	30	266°	153	_____	_____
7.	190°	35	97°	198	_____	_____
8.	110°	10	355°	179	_____	_____
9.	280°	30	58°	236	_____	_____
10.	20°	20	246°	197	_____	_____

	TRUE HEADING	TRUE AIR SPEED	TRACK	GROUND SPEED	WIND DIRECTION	WIND SPEED
1.	75°	140	87°	141	_____	_____
2.	240°	155	247°	173	_____	_____
3.	352°	145	340°	116	_____	_____
4.	115°	170	101°	161	_____	_____
5.	26°	200	28°	224	_____	_____
6.	173°	160	169°	132	_____	_____
7.	230°	180	218°	176	_____	_____
8.	190°	165	178°	168	_____	_____
9.	80°	150	70°	152	_____	_____
10.	310°	140	305°	169	_____	_____

ANSWERS TO SELF EVALUATION EXERCISE

1. d. 206° 51k
2. b. 279° 65k
3. c. 212° 99k
4. a. 129° 76k
5. a. TH 129° TAS 25k
6. d. $275^{\circ}/23k$
7. c. 115°
8. a. 108k
9. a. 174°
10. d. 148k
11. a. 65° 88k
12. c. Under the grommet
13. a. the wind first, if its given.
14. c. under the wind dot.

RULES TO REMEMBER

1. If wind is given, always plot this first.
2. TC or TR always goes under the true index.
3. TAS will always go under the wind dot.
4. GS will always go under the grommet.
5. Center line always represents TC or TR.

	WIND DIR.	WIND SPEED	TRUE COURSE	TRUE AIR SPEED	TRUE HEADING	GROUND SPEED
1.	148°	32	80°	170	_____	_____
2.	300°	18	10°	130	_____	_____
3.	15°	26	160°	190	_____	_____
4.	225°	15	275°	140	_____	_____
5.	180°	35	50°	200	_____	_____
6.	78°	30	190°	175	_____	_____
7.	110°	38	28°	300	_____	_____
8.	45°	25	292°	165	_____	_____
9.	60°	35	130°	180	_____	_____
10.	310°	36	206°	145	_____	_____

ANSWERS TO PRACTICAL EXERCISE

TH	TAS	WD	WS	TH	GS
1. 333°	152K	1. 349°	29K	1. 090°	155K
2. 278°	142K	2. 113°	28K	2. 002°	123K
3. 178°	156K	3. 029°	40K	3. 155°	211K
4. 002°	148K	4. 185°	41K	4. 270°	130K
5. 106°	142K	5. 224°	25K	5. 058°	220K
6. 274°	172K	6. 191°	30K	6. 181°	183K
7. 107°	200K	7. 308°	38K	7. 035°	295K
8. 358°	175K	8. 279°	35K	8. 300°	173K
9. 052°	215K	9. 169°	27K	9. 119°	165K
10. 250°	184K	10. 103°	32K	10. 220°	150K

PRACTICE NAVIGATION PROBLEMS

AM-62

1. TC 005°
 Wind $250^{\circ}/30K$
 GS $140K$
 Dev. -2°
 Var. $10^{\circ}E$
 Alt $10,000$ ft
 Temp $0^{\circ}C$
 TH $35^{\circ}R$ $35^{\circ}K$
 TAS $150K$ $35^{\circ}K$

7. Wind $320/30K$
 TAS $180K$
 TC 175°

8. GIVEN: IND ALT $13,000$ ft
 TEMP $-32^{\circ}C$
 FIND: Density Alt.

2. TR 122°
 GS $154K$
 TH 118°
 TAS $160K$
 Wind $/$

9. IAS $180K$
 ALT. 7500 ft
 TAS K

10. Fuel Consumed 58 gallons
 Time 1:27
 Fuel Remaining 148 gallons
 Time Remaining

3. CH 085°
 Dev. -5°
 Var. $150W$
 Temp. $+35^{\circ}C$
 Alt. 2000 Ft
 TR 087°
 Dist. 94NM
 Time :40
 TAS $166K$
 WD/WS $/$

11. GIVEN: TOTAL FUEL 828 lbs
 DEPART TIME 2316
 ATA 0247
 FUEL REMAINING 96 lbs
 FIND: PPH, R/C

4. GIVEN: TOTAL FUEL ABOARD 780 lbs
 RESERVE 210 lbs
 DEPARTURE TIME 1535
 R/C 180 PPH
 FIND: Without using reserve 45
 you can fly until $18:45$

12. W/V $55^{\circ}/25K$
 TC 340°
 GS $84K$
 Temp. $+15^{\circ}C$
 Alt. $4,000$ ft

13. Fuel Used 135 lbs
 Time 1:28:01
 R/C 180 lbs per hr
 Dist. 143.6M
 GS $9.2K$

5. GS $68K$
 Time 00:01.5
 Distance 123 NM

6. GIVEN: Dist to Destination 130 NM
 Departure Time 1734
 Distance to 1st Ck Pt 45 NM
 ATA at 1st Ck Pt 1753
 FIND: ETA at Destination

15. TC 87
 IAS $125K$
 I. ALT. $5,000$ ft.
 Temp. $+5^{\circ}C$
 Wind $305/42K$

16.	TC	065	20.	TC	77
	TAS	148 MPH		GS	177K
	Wind	117/17 MPH		Wind	335/20K
	Distance	278 SM		I. ALT.	12,000 ft
		ETE		Temp.	-20°C
				IAS	K
17.	TC	113	21.	CH	85
	GS	167K		VAR.	3W
	Wind	005/23K		Dev	+3
		TH-TAS		IAS	151K
18.	CH	269		I. ALT	5000 ft
	I. ALT	7000 ft		Temp	+15°C
	Temp.	+20°C		Track	67
	Var.	11W		Distance	80 NM
	Track	251		Time	25 min.
	GS	143K			WD/WS
	IAS	145K			
	Dev.	+2	22.	WV	240/30K
		Wind		TC	195
		/		TAS	180K
19.	Wind	275/25K			TH-GS
	TC	115			
	TAS	180K	23.	GS	148 MPH
		TH-GS		Time	:45
					Dist. NM

1. TH = 353° TAS = 130 K
2. Wind = 059°/13K
3. Wind = 027°/40K
4. 18:45
5. 1.7 NM
6. 18:29 ETA
7. TH = 180° GS = 204K
8. 10,050 ft.
9. 202 K
10. 3:42
11. 209 PPH
12. TH = 355° IAS = 87K
13. 134 PPH
14. 1:21
15. TH = 075° GS = 166K
16. 2:03 ETE
17. TH = 105° TAS = 162K
18. Wind = 282°/28K
19. TH = 118° GS = 204K
20. IAS 148
21. Wind 197°/46K
22. TH = 202° GS = 158K
23. 96.5 NM

L2535 Army-Ft. Sill, Okla.