

not of 2 gather per hour class

AVIATOR MAINTENANCE HANDBOOK

CH-34

JANUARY 1969

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
FORT RUCKER, ALABAMA

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

TABLE OF CONTENTS

AVIATOR MAINTENANCE HANDBOOK, CH-34

	<u>Page</u>
1. Introduction and General Information	1
2. Fuel and Oil Systems	9
3. Flight Controls	21
4. Power Plant	33
5. Tracking and Vibrations	43
6. Transmission System	51
7. Rotor Systems	61
8. Test Flight Requirements	71
9. Automatic Stabilization Equipment	77
10. Electrical System	97
11. Landing Gear and Brake System	107
12. Weight and Balance	113
13. Utility Systems	131
14. Hydraulic Systems	141

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1964-3

PERFORMANCE OBJECTIVES

INTRODUCTION AND GENERAL INFORMATION

1. KNOWLEDGES:

- a. When given a diagram of the aircraft, the student will be able to identify, from memory, the components of the aircraft as numbered on the diagram with eight out of nine correct.
- b. When given a list of capabilities of the aircraft, the student will be able to identify them, from memory and without error, by drawing lines from range, loads, and speed in knots to capabilities.
- c. When given a numbered diagram of the side view of the aircraft, the student will be able, from memory and without error, to match compartments of the forward fuselage with numbers on the diagram.
- d. When given a list of incomplete statements on the emergency exits, the student will be able to complete the statements with the aid of references and without error.
- e. When given a list of incomplete statements on emergency equipment, the student will be able to complete the statements from memory and without error.
- f. When given a list of incomplete statements on folding the pylon and main rotor blades, the student will be able to complete the statements from memory and without error.

2. SKILLS: None.

CABIN 13' 5" LONG
5' WIDE
SEPD 18 TROOPS
ON
8 LITTERS

NOTES

35 TIE DOWN RINGS
1,250 lb ~~each~~

FLOOR 200 lb per sq ft

turning radius after 29'

tail ^{at rear} 141' from main body

RANGE OF AC
262 gal
cruise 90K
300 NM
3 hours.

LOADS
INTERNAL 5,000 lb.
EXTERNAL 4,000
^{50%} ~~labeled~~ 5,000 lb ~~if~~

Gross weight
12,068 ~~removed~~
12,950 ~~not counting load~~
13,600 max, max

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1964-3

STUDENT OUTLINE

INTRODUCTION AND GENERAL INFORMATION

1. Introduction to the course.

WEATHER LIMITED DUE TO ICE & TURBULENCE.

2. Description (general). CH-34C

LIGHT CARGO CLASS II

UP TO 5000 LB

COST 376,000

sight bad

R1820-84C

not have power

1525

3. Capabilities.

cabin

A/S forward 30-120K 120-150K
cabin

tail

" lateral 45K

tail rotor

" rear 20K

4. Structure (airframe group) - three main sections.

a. Forward fuselage section - nine compartments.

total length of 1/6 65' 9.32"

min diameter 37" ~~flapless wingspan 9' 2.44"~~

height 15' 10"

~~tail rotor clearance 6' 0"~~

min height 14' 3.45"

width 56'

3

~~min 13' 1" flapless height~~

~~tail rotor diameter 9' 4"~~

A 3 SEMI MONOCOT
FORWARD OR CABIN SECTION.
ENGINE

b. Aft fuselage (tail cone) section.

FOR BALANCE OF N/C

c. Pylon section.

INTERMEDIATE GEAR BOX & 90° BOX ETC. + longitudinal
TAIL MOTOR DRIVE + HOLDS TAIL MOTOR, TAIL MOTOR + longitudinal
FACILIT CONTROLS,
FORWARD CABIN BOLCUM HEAD MADE OF
TIN TINUM AS FIRE SHIELD

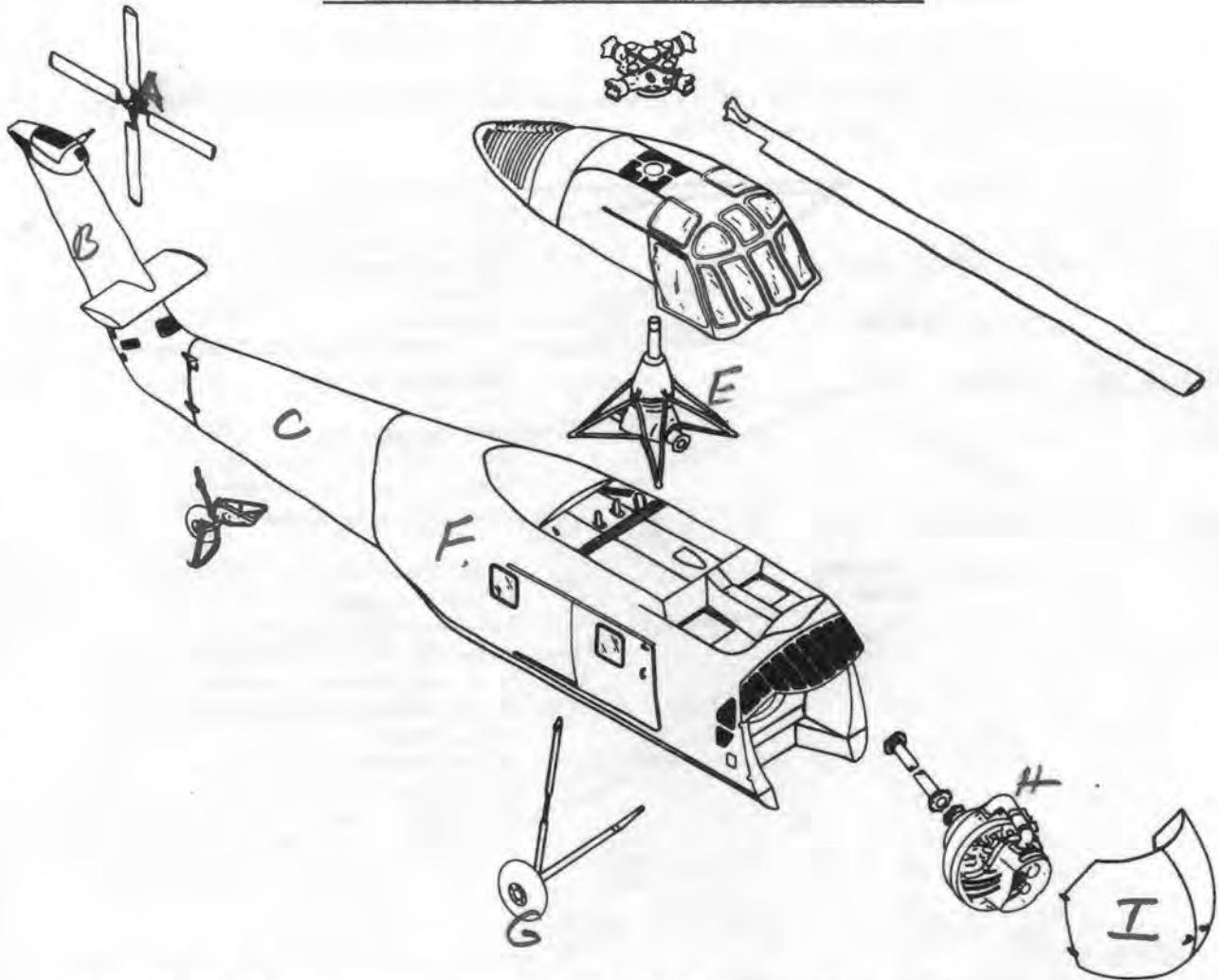
5. Emergency exits. sliding windows cargo 4 windows
in cabin with 2m jettison type
red x if jettison not safety wind
5 jettison type escape 2m jettison

6. Emergency equipment. crew alarm bell

2m AFT OF CARGO COMP
1 BETWEEN seats
2m trigger only one required.
FIRE EXTINGUISH CF380 above cargo door

7. Pylon and main rotor blade folding.

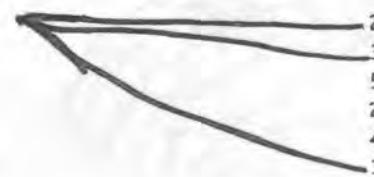
Leading edge toward the ground when
folded.

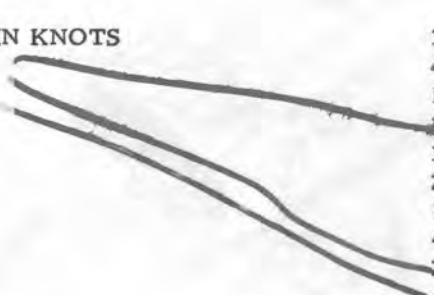

3 sections 9 components.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

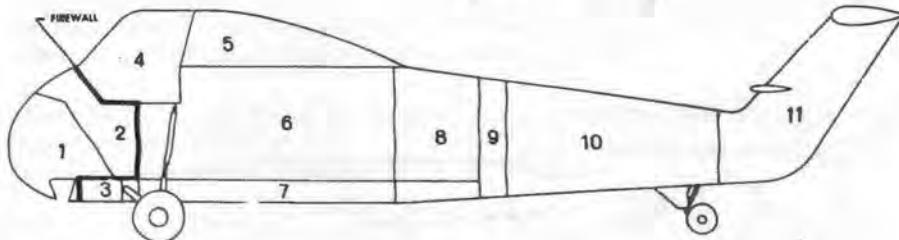
File No. 1964-3

PERFORMANCE CHECK




INTRODUCTION AND GENERAL INFORMATION

1. Identify the following components of the CH-34, as numbered on the exploded view above, by placing the correct numbers in the blank spaces below:
 - a. Vertical antitorque tail rotor. ____
 - b. Pylon section. ____
 - c. Aft fuselage. ____


- d. Tailwheel. _____
- e. Transmission compartment. _____
- f. Forward fuselage section. _____
- g. Main landing gear. _____
- h. Powerplant. _____
- i. Clamshell doors. _____

2. Match the correct series of CH-34 capabilities below by drawing lines from range, loads, and speed to the capabilities.

- a. RANGE
 - 262 usable gallons.
 - 300 nautical miles.
 - 500 nautical miles.
 - 272 usable gallons.
 - 4 hours.
 - 3 hours.
- b. LOADS
 - 4500 internal.
 - 5500 internal.
 - 5000 internal.
 - 7000 external - A-model.
 - 6000 external - C-model.
 - 5000 external - C-model.
- c. SPEED IN KNOTS
 - 35 to 129 forward - desired.
 - 48 lateral - maximum.
 - 150 forward - redlined.
 - 10 to 128 forward - desired.
 - 35 to 128 forward - desired.
 - 25 rearward - maximum.
 - 148 forward - redlined.
 - 40 rearward - maximum.
 - 20 rearward - maximum.
 - 45 lateral - maximum.
 - 20 lateral - maximum.

3. Match compartments of fuselage with numbers on compartments by placing the correct numbers in the blank spaces below.

a. Engine compartment.	<u>1</u>	e. Transmission compartment.	<u>5</u>
b. Clutch compartment.	<u>2</u>	f. Cabin compartment.	<u>6</u>
c. Oil cell compartment.	<u>3</u>	g. Fuel cell compartment.	<u>7</u>
d. Cockpit compartment.	<u>4</u>	h. Electronic compartment.	<u>8</u>
		i. Heater compartment.	<u>9</u>

4. Complete statements on emergency exits by filling in the blanks.

- The cockpit window is the only jettisonable exit on the right side of the aircraft.
- The right aft cabin window is a non-jettisonable -type exit.
- The left side cabin exits are jettisonable or hinged -type exits.
- There are 7 emergency exits.
- The cabin door window is a cut out emergency -type exit.

5. Complete statements on emergency equipment by filling in the blanks.

- The fire extinguisher is located above cabin door in cabin.
- The first aid kits are located 2 on aft bulkhead and in the cabin on the cockpit floor just aft bulkhead.
- The crew alarm bell is located _____.

6. Complete statements on pylon and main rotor blade folding by filling in the blank spaces.

- When folding pylon, check position of _____ to clear fuselage section.
- Swing pylon around and secure with _____ pin.
- Position main rotor blades to _____-degree angle with the _____ axis of the helicopter.

50,000 BTO heater.

01L 10.5 gal MPX

FUEL 3 TANKS WITH 11 CELLS
262 GAL USEABLE,
116/145 fuel.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1967-2

PERFORMANCE OBJECTIVES

FUEL AND OIL SYSTEMS

1. KNOWLEDGES:

a. Fuel system.

- (1) Match components of the fuel system with statements of their description, location, and operation.
- (2) Worksheet and TM's 55-1520-202-10 and -20.
- (3) In accordance with TM's 55-1520-202-10 and -20.

b. Oil system.

- (1) Complete statements on description, location, and operation of the oil system and its components.
- (2) Worksheet and TM's 55-1520-202-10 and -20.
- (3) In accordance with TM's 55-1520-202-10 and -20.

2. SKILLS: None.

NOTES

TO THE REPORT
OF THE COMMITTEE ON THE
ESTATE OF JOHN

WILLIAM LEWIS

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

1. 1887

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1967-2

STUDENT OUTLINE

FUEL AND OIL SYSTEMS

1. General description of fuel system.

3 multi cell tanks open vent transfer type

2. Fuel tanks.

a. Location.

b. Description.

115/145 FUEL forward 5th cell self sealing
sub cargo cargo. floor center 3 cells
aft 6

c. Usable capacity.

100 gal forward (Total 263 gal usable 262)
70 gal - center
92 gal - aft

d. Venting.

all tanks are vented all center tank
lose fuel drain surge.

e. Sumps.

all cells interconnected to fuel drain sump

3. Normal system.

a. Transfer pumps. 3 transfer pumps in center cell; centrifugal electrical pumps. 28 V. DC 100 gal per hour at 5 PSI pump speed

b. No-transfer warning light system. light comes on could be tank is empty, fuel selector valve not turned on,

c. Check valves. located on each side of all center cell to allow bid flow,

d. Level control valve. forward right fuel cell keeps high fuel level

Pump in aft cell tank to pressure switch will cut pump off in below 15 PSI

overrun through pump pump fuel over bid when bid

e. Fuel overflow safety system. control valve fails

flow from pump fuel over bid when bid control valve fails.

consists of 4 system

fuel detector

over flow safety switch

f. **Booster pump.** ~~found off cut. found tool.~~
electrical driven 28 V. DC; pressure system
to carburetor for starting. System the
fuel when engine driven pump fails.
185 gal per hr $19 - 25$ psi

g. **Selector valve control system.**
Bentle switch & for contol. control fuel from
tanks to engine. 3 position switch off, on,
emergency.

h. **Fuel system strainer.**

i. **Defueling valve.**

bottom of selector valve. used to drain
the P/C when tanks need draining.

4. **Emergency fuel system.**

Emergency with left side P/C; pressure right side of P/C
fly nose low altitude to make gravity
feed in emergency system.

5. Engine fuel system.

a. Engine-driven fuel pump.

Left side of engine, rotary van positive displacement. Use by pass valve for starting. Both pumps will feed engine if engine driven pump fails. 23-25PSI

b. Pressure indicating system.

c. Carburetor. Fuel air to each cylinder under all conditions.

Pressure injector with built-in compensating carburetor. Electrical operated primer.

6. Fuel quantity system.

idly out of position
normal position

7. Fuel low-level warning system.

oil. no oil change required just keep adding

8. Oil system.

a. Oil cells. 2 cells filter interconnected by
inlet & vent line. 10.5 gal mon vented to nose
1112-22-851 - 1100 oil or 50 weight oil.
for 5 gal expansion you in system.

b. Y-fitting. connects engine oil pump to oil
system.

drain valve

oil dilution valve

swing check valve. stops oil from draining into cold
engine in static.

c. Temperature indicating system.

d. Oil pumps. on after cooler rear cover.

gear type pump with screen.

4 oil pump in system. 3 acconverger + 1 engine drive pump,
65-75 PSI

e. Relief valve.

f. Pressure indicating system.

pressure transmitter,
give reading on panel.

g. Oil cooler.

Forward tank section below the engine
thermostatic operated. for in clutch coast.
flow down on cooler.

h. Oil dilution system.

used in cold weather
temp oil should be below 50°C

i. Spectrometric oil analysis program.

and off supply oil
every intermediate AR 750-13

9. Common malfunctions and corrective actions.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1967-2

PERFORMANCE CHECK

FUEL AND OIL SYSTEMS

1. In the blank by each numbered statement, place the letter of the component to which the statement applies.

a. Fuel system.	—	(1) Tells pilot that level control valve has failed.
b. Forward fuel tank.	—	(2) Has three cells and holds 92 US gallons of usable fuel.
c. Center fuel tank.	—	(3) Removes foreign matter from fuel going to the engine from either normal or emergency system.
d. Aft fuel tank.	—	(4) Operates microswitch which controls circuit from transfer pump switches to pumps.
e. Transfer pumps.	—	(5) Could be described as open-vent, transfer-type.
f. No-transfer warning light.	—	(6) Allows fuel to flow out of a tank but not into a tank.
g. Check valve.	—	(7) Supplies the proper mixture of fuel and air to the engine at all power settings and altitudes.
h. Level control valve.	—	(8) Prevents loss of fuel overboard if lever control valve fails.
i. Fuel overflow safety system.	—	(9) Pressurized fuel to carburetor for starting.
j. Fuel overflow warning light.	—	(10) Tells pilot when 22 gallons or 132 pounds of fuel remain in forward tank.
k. Booster pump.	—	(11) Is self-sealing and holds 100 usable gallons.
l. Selector valve control system.	—	(12) Allows fuel to be drained from all tanks when fuel is contaminated.
m. Selector valve control.	—	
n. Fuel system strainer.	—	
o. Defueling valve.	—	
p. Emergency fuel system.	—	
q. Engine-driven fuel pump.	—	
r. Carburetor.	—	
s. Fuel quantity system.	—	
t. Low-level warning system.	—	

- ____ (13) Controls lever of fuel in forward tank.
- ____ (14) Gives the pilot remote control of the selector valve.
- ____ (15) Gives the pilot a continuous indication of fuel remaining in either tank or total of all tanks.
- ____ (16) Supplies fuel for engine operation when the normal fuel system is inoperative.
- ____ (17) Contains the pressure relief valve for the fuel system.
- ____ (18) Pump fuel to the forward tank for engine consumption.
- ____ (19) Is not self-sealing and has a usable capacity of 70 gallons.
- ____ (20) Tells pilot when fuel is not being transferred.
- ____ (21) If ruptured, will allow all fuel to drain from all tanks.

2. In the blanks in the statements below, pertaining to the engine oil system, place the word or words which will make the statements correct.

- a. The oil cells are _____ -type and are interconnected by inlet, return, and _____ lines.
- b. The oil tanks are vented to the atmosphere through the _____ in the nose section of the engine.
- c. The Y-fitting contains a _____ valve and a _____ valve as well as the manual _____ shutoff valve.
- d. The oil temperature bulb is located in the oil _____ housing on the _____ section.
- e. Oil pressure is adjusted by adjusting the _____ in the oil pump housing.
- f. The purpose of the _____ valve is to prevent oil from draining from the engine back into the cells.
- g. The oil pressure indicator receives its electrical indication of pressure from the _____ located above the right oil cell.

- h. Cooling air for the oil cooler comes from the _____ fan.
- i. Flow of oil and air through the oil cooler is _____ controlled.
- j. _____ is used to aid starting in cold climates.
- k. _____ is used to prevent sludge buildup inside the engine.
- l. Normal engine oil pressure should be _____ to _____ psi.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1973-1

PERFORMANCE OBJECTIVES

FLIGHT CONTROLS

1. KNOWLEDGES:

- a. Cyclic pitch control system.
 - (1) Match cyclic control system components with statements giving description, location, and operation.
 - (2) Worksheet and TM 55-1520-202-20.
 - (3) As prescribed in TM 55-1520-202-20.
- b. Collective pitch control system.
 - (1) Match collective pitch control system components with statements giving description, location, and operation.
 - (2) Worksheet and TM 55-1520-202-20.
 - (3) As prescribed in TM 55-1520-202-20.
- c. Antitorque control system.
 - (1) Label components of antitorque control system.
 - (2) Schematic.
 - (3) As prescribed in TM 55-1520-202-20.
- d. Flight controls general information.
 - (1) Complete statements pertaining to flight controls.
 - (2) Worksheet and TM 55-1520-202-20.
 - (3) As prescribed in TM 55-1520-202-20.
- e. Horizontal stabilizer.
 - (1) Select the statement which best describes the horizontal stabilizer.
 - (2) Worksheet and TM 55-1520-202-20.

(3) As prescribed by TM 55-1520-202-20.

2. SKILLS: None.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1973-1

STUDENT OUTLINE

FLIGHT CONTROLS

1. Cyclic pitch control system. provide directed control.

a. Description.

sticks are interconnected

b. Components.

(1) Cyclic pitch sticks.

stick trim provide a fine feel.

(2) Socket and yoke assemblies.

cyclic.

allows free movement of

(3) Auxiliary servo assembly.

between stick & control
1 for lateral
1 for longitudinal control. connected to
mixing unit

(4) Mixing unit. The part of trimmum dead.
After collecting & cyclic together.

(5) Primary servos.

1. Nose 3 ↑ right lateral
2. left lateral
3. fore & aft

set 45° of nose of AC when \pm of gyroscopic
(6) Star assembly precession
on main trans. most. transforms push pull
action to rotary motion.

(7) Stick trim system.

provide artificial feel
from main control position
connected to stick on left side of AC under floor.
Power from secondary buses.

2. Collective pitch control system.

a. Description.

provide vertical control
longer pitch in all blade equally.
1 cylinder in analog servo.
some linkage for rising down on ²⁴ of the head.

b. Components.

(1) Control sticks.

motor cycle type throttle
with friction lock.

(2) Collective pitch torque tube.

collective fall down + throttle to
inert.

(3) Auxiliary servo assembly.

1 glider.

(4) Mixing unit.

~~some linkage from mixing~~
~~lever to the blades~~

3. Tail rotor control system.

a. Description.

b. Components.

(1) Pedals.

(2) Pedal adjusters.

(3) Forward quadrant.

(4) Pedal damper.

(5) Tail rotor servo.

6) Aft quadrant and bellcrank.

(7) Tail rotor gearbox.

4. Horizontal stabilizer.

5. Common malfunctions and remedial actions.

NOTES

1. *Principles*

2. *Principles*

3. *Principles*

4. *Principles*

5. *Principles*

6. *Principles*

7. *Principles*

8. *Principles*

9. *Principles*

10. *Principles*

11. *Principles*

12. *Principles*

13. *Principles*

14. *Principles*

15. *Principles*

16. *Principles*

17. *Principles*

18. *Principles*

19. *Principles*

20. *Principles*

21. *Principles*

22. *Principles*

23. *Principles*

24. *Principles*

25. *Principles*

26. *Principles*

27. *Principles*

28. *Principles*

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1973-1

PERFORMANCE CHECK

FLIGHT CONTROLS

1. Cyclic pitch control system. Place letter which appears by each component in the blank by statement which applies to it.

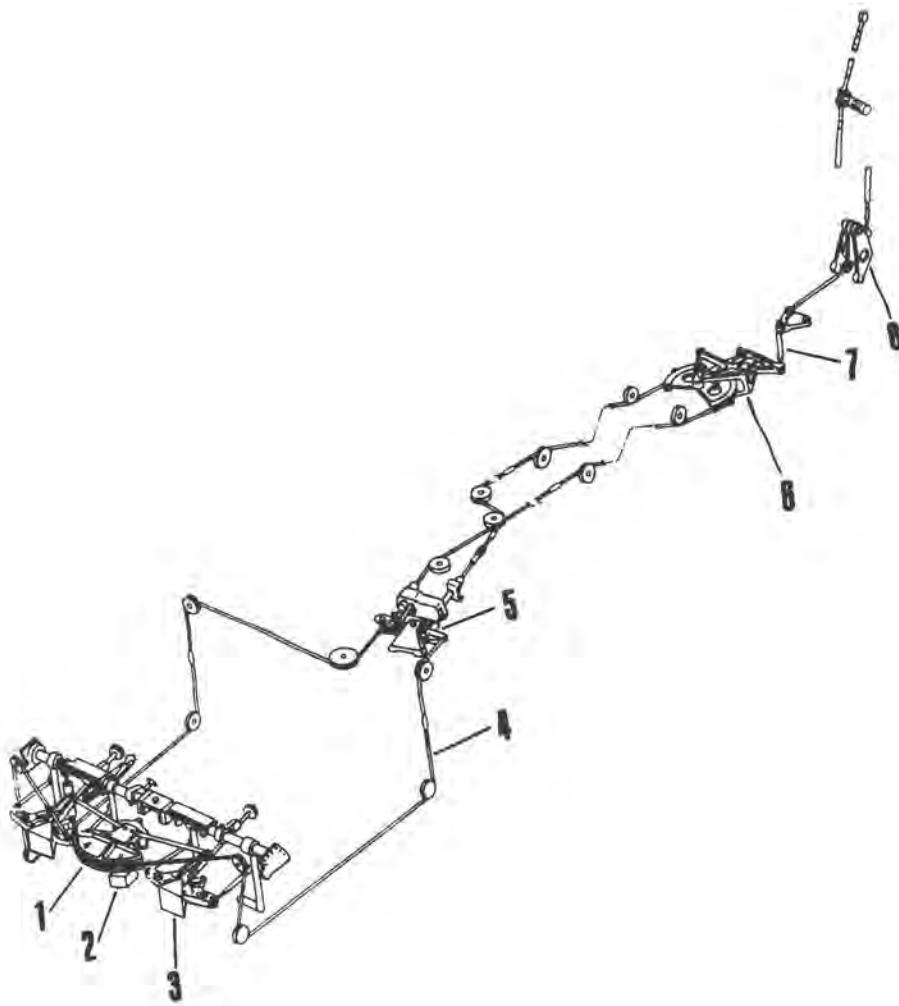
COLUMN A

a. Cyclic pitch sticks.	f. Star assembly.
b. Socket and yoke assemblies.	g. Stick trim assembly.
c. Auxiliary servo assembly.	h. Force gradient assemblies.
d. Mixing unit.	i. Magnetic brakes.
e. Primary servos.	

COLUMN B

- Gives artificial feel to controls.
- Transforms push-pull motion to rotary push-pull motion.
- One each for pilot and copilot attached at bottom to socket and yoke assemblies.
- Attached to stationary star and gives pilot a power assist.
- Has 60:1 gear ratio between disc and arm.
- Point where ASE pitch and roll control enters system.
- Has double-acting springs and is connected to control linkage under copilot's floor.
- Permit universal movement of sticks in a horizontal plane.
- Mixes cyclic and collective pitch.
- Acts as another link in controls when hydraulic pressure is off.

2. Collective pitch control system. Place letter which appears by each component in the blank by statements which apply to it. One statement may apply to more than one component.


COLUMN A

a. Pilot's stick.	d. Auxiliary servo assembly.
b. Copilot's stick.	e. Mixing unit.
c. Torque tube.	

COLUMN B

- Operates on compound bellcrank principle.
- Incorporates collective pitch balance spring.
- Has collective pitch lock.
- Contains throttle limit switch.
- Has throttle friction lock.
- Point where ASE altitude control enters system.

3. Antitorque control system. Write names of numbered components in blanks provided.

1. _____

2. _____

3. _____

4. _____

5. _____

6. _____

7. _____

8. _____

4. Flight controls general information. Put the proper word or words in the statements to make them correct.

- The cyclic pitch system provides _____ control.
- The portion of the flight controls common to both cyclic and collective pitch control systems is from the _____ to the star assembly.
- The stick trim provides a movable _____ stick position.
- Collective control is in the _____ direction.
- The stick trim controls are a master switch on the _____ panel and release switches on the _____.
- The tail rotor controls give the pilot directional control at _____.

5. Horizontal stabilizer. Draw a ring around the letter of the statement which best describes the horizontal stabilizer.

- The horizontal stabilizer is an airfoil which is raised or lowered to compensate for out-of-balance load.
- The horizontal stabilizer is an adjustable airfoil mounted on the forward spar of the pylon to increase longitudinal stability in forward flight.
- The horizontal stabilizer is an aluminum and magnesium structure mounted on the pylon as a work platform for maintenance personnel.
- The horizontal stabilizer is an adjustable airfoil constructed of aluminum and magnesium which is synchronized to cyclic pitch controls to increase stability in forward flight.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1966-2

PERFORMANCE OBJECTIVES

POWER PLANT

1. KNOWLEDGES:

a. Engine description, mounting, and capabilities.

- (1) Fill in blanks in statements concerning engine description, mounting, and capabilities.
- (2) Worksheet and TM 55-1520-202-20.
- (3) In accordance with TM 55-1520-202-20.

b. Engine accessories.

- (1) Match nomenclature of accessories with statement of description and operation.
- (2) Worksheet and TM 55-1520-202-20.
- (3) In accordance with TM 55-1520-202-20.

c. Engine cooling system.

- (1) Answer questions on the description and operation of the engine cooling system.
- (2) Worksheet and TM 55-1520-202-20.
- (3) In accordance with TM 55-1520-202-20.

d. Ignition system.

- (1) Match components on ignition schematic with the correct item description.
- (2) Schematic and worksheet.
- (3) In accordance with TM 55-1520-202-20.

2. SKILLS: None.

NOTES

TO THE INTEGRAL TESTS OF THE EQUATIONS

OF THE EQUATIONS

INTEGRAL TESTS

TESTS

INTEGRAL TESTS OF THE EQUATIONS

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1966-2

STUDENT OUTLINE

POWER PLANT

1. Engine, R-1820-84C, Curtiss-Wright.

a. Description. radial single row of 9 cylinders air cooled single, eight speed supercharger.

b. Mounted. mounted on 35° tilt front of engine pointed up

(6 SECTIONS)

c. Sections. crank case front section, power section, supercharger front housing, supercharger rear housing, supercharger rear cover.

2. Rating (brake horsepower).

continuous operation 1275 HP 2500 RPM

47.5 HP

30 MIN. 14.25 2700 RPM, 52.0 MAP

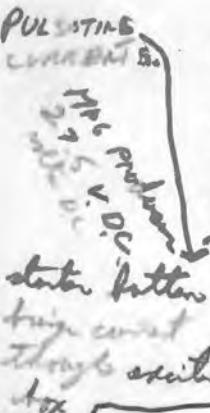
5 MIN. 15.25 2800 RPM, 56.5 MAP

3. Limitations.

2900 RPM - 3000 RPM special injection

3200 & ABOVE

OVER BOOST CHECK CHART REQUIRED


3000-3200
10 times special
injection for
over boost

4. Cooling system.

a. cooling for 27 blades. cools oil cooler, engine, acts as flywheel, cooler direct air for air induction

contra vane puts air though cylinder for only
72 revs straightens the air & cools engine & accessories

18 spark plugs.

Engine accessories.

a. Ignition system.

Low tension voltage for ignition system
Low tension produces less radio problem.

Mag. coil #1 cold 25° FPN type car. [D.T.C.]

b. Starter. 5° FINE or MEDIUM. water box and vent.
24 V direct cranking. slip clutch 800 ft lb torque
over ride on throttle dyno test.
30 sec hot cool 1 minute 2 times then 30 sec allow
cooling of 30 minutes.

c. Carburetor.

Short-barrel, down draft, two barrel pressure injected
top of accessory section
sophia carb fuel + air mixture for all power settings

d. Tachometer generator.

8 o'clock for gen. AC operated over the engine
tor.

e. Oil pumps. 3 oil pumps.

see pressure gen pump $70+5$ PSI
scavenge pump take oil from vent of engine block
to oil strainer area.
Fuel pump. oil from front of engine block to carb + tanks.

return main pump fuel to carb at $23-25$ PSI

g. Auxiliary hydraulic pump.

one on engine one on trans.
engine 9 o'clock of stator pressure to hydraulic system,
at 1,500 PSI to aux system. ~~constant pressure, variable delivery, with~~
h. Cylinder head temperature thermocouple - No. 7 cylinder ~~constant pressure, variable delivery, with~~

6. Common malfunctions.
 1. spark plug fouling; opposite eye low and low RPM
 2. engine won't stop in high cut off from adjustment
7. DA Form 2408-13. record the malfunctions of
engine & A/C

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1966-2

PERFORMANCE CHECK

POWER PLANT

1. Fill in the blanks in the following statements:

- a. The engine used in the CH-34 is the Curtiss-Wright 13-69.
- b. The front of the engine is facing forward.
- c. It is mounted 35° above horizontal.
- d. The engine has 9 cylinders in a circle row.
- e. The engine is rated at 1275 horsepower, at 2500 rpm with 47.5 inches MAP.
- f. At this power setting, the engine can operate forever.
- g. The engine has 5 sections.
- h. The fan acts as a flywheel and provides cooling air.
- i. The engine can produce 1525 horsepower for a 5-minute period when engine rpm is 2800 with 56.5 inches MAP.
- j. An special ignition of the engine at 2900 to 3000 rpm calls for a special inspection of the engine.

2. Match the engine accessories in column A with their description in column B.

<u>Column A</u>	<u>Column B</u>
a. Starter.	<u>G</u> Provides low-tension spark to the booster coil, located upper right side of the accessory section.
b. Carburetor.	<u>B</u> Classified as a two-barrel, downdraft, pressure-injected altitude and idle-compensated.
c. Fuel pump.	<u>D</u> Provides a pressure lubrication system on engine and a means of returning oil to the cells.
d. Oil pumps.	— Generates current to an indicator to read the engine rpm.
e. Hydraulic pump.	— Located in center of the accessory section.
f. Tachometer generator.	— Located on right side of accessory section.
g. Magneto.	— Puts out 1500 psi to the auxiliary servo system.
	— Classified as dual.
	— Supplies correct fuel-air mixture.
	— Located left bottom of accessory section and bottom of front crankcase section.
	— Located next to the oil pump.
	— Provides direct cranking.
	— Provides pressurized fuel to carburetor.
	— 28-volt with a slip clutch.

3. Answer the following questions:

a. What is the purpose of the cooling fan?

b. What changes the direction of the cool air after the fan pushes it toward the engine?

contra vane assembly.

c. How is the magneto cooled?

air from engine cooling
fan.

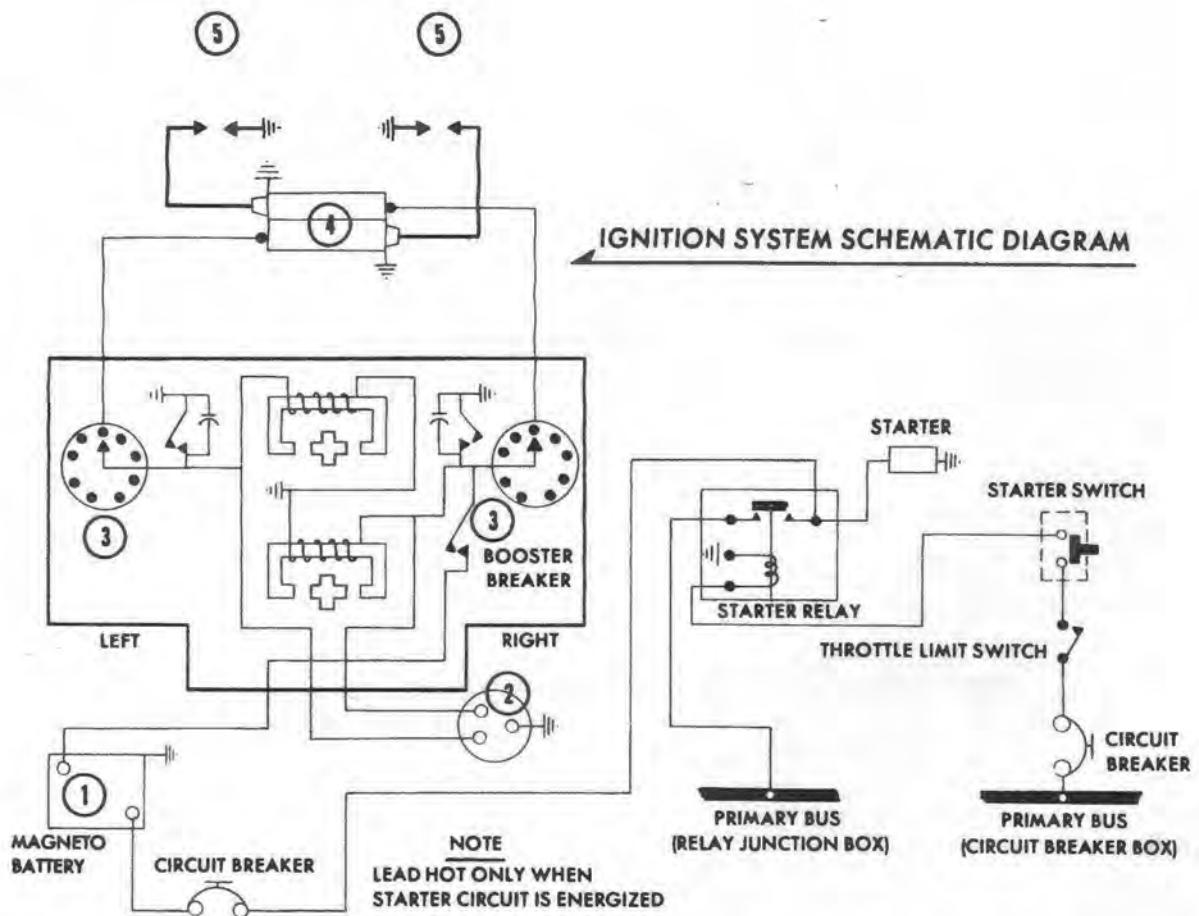
d. How many blades are on the fan assembly?

24

e. How many vanes has the contravane assembly?

72

4. Match numbered components on the schematic to the correct component listed below.


Spark plug.

Ignition switch.

Booster coil.

Induction vibrator.

Magneto.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1970-1

PERFORMANCE OBJECTIVES

TRACKING AND VIBRATIONS

1. KNOWLEDGES:

a. Vibrations.

- (1) Complete statements on the two major types of vibrations.
- (2) Worksheet.
- (3) In accordance with TM 55-1520-202-10 and -20.

b. Adnormal vibrations.

- (1) Match the statements on the three types of abnormal vibrations.
- (2) Worksheet.
- (3) In accordance with TM 55-1520-202-10 and -20.

c. Blade tracking.

- (1) Complete the statements on methods and purpose of blade tracking.
- (2) Worksheet.
- (3) In accordance with TM 55-1520-10 and -20.

d. Engine and servos.

- (1) Complete the statements on the engine power settings and servo switch position for blade tracking.
- (2) Worksheet.
- (3) In accordance with TM 55-1520-202-10 and -20.

2. SKILLS: None.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1970-1

STUDENT OUTLINE

TRACKING AND VIBRATIONS

1. 2 Types of vibrations.

test
guitar

- a. normal during low rotor R.P.M.
- b. abnormal excessive bogs in seat, bluing int, puddle out fast to shgs.

2. Abnormal vibrations.

- a. Low frequency. 100-400 R.P.M. from int. felt through air flow of a/c or in seat. blade out of track or damaged. doppers. low glycol/air mix. fluid.
- b. Medium frequency 1000, 2000 R.P.M. from tail rotor felt in puddles
- c. High frequency. 3000 & above. engine only for, drive shaft. felt as tight. damaged engine mounts, for blade damaged. clutch together.

3. Causes.

- a. wrong engine mounts, for blade damaged. clutch together. mis aligned drive shafts or worn drive shafts.

b.

c.

d.

e.

f.

4. Blade tracking. to clear the top path course.
blades allowed \pm " apart.
a. gear box replaced.
b. ~~motor~~ run with blade closed.
c. at normal rotation
d. Equipment required. 2 people qualified with a man
a ground. 2 people qualified with a man
(1) ground man at your 2 o'clock position.
(2) facing direction of blade rotation
(3) tracking flag
mark end of blade with green marker.
e. Tracking procedures.
(1) 2 people ground man sift
(2) tracking flag.
(3) work with gear wrench
(4) 1 ft either \pm " apart at end of blade.
(5) make adjustments of 1 ft at a time.
(6)
(7)

^{total}
 $\frac{1}{2}$ ' platted between all blades.

f. Perform track.

(1) *face A/c into the wind.*

(2) *2,200 RPM MAN PRESS A/c LIGHT ON GEAR
SERVO SWITCH TO ON POSITION,*

g. Adjustments.

on flat at a time. upper end

(1) pitch control rod,

*(2) lengthen the rod raise the
end & top pitch plane.*

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1970-1

PERFORMANCE CHECK

TRACKING AND VIBRATIONS

1. The two major types of vibrations which are found in the CH-34 helicopter are _____ and _____.

2. Match the statements on types of abnormal vibrations with their locations.

a. Low frequency	2000 engine rpm or higher _____.
b. High frequency	Tail rotor assembly _____.
c. Medium frequency	Main rotor assembly _____.

3. The purpose of tracking main rotor blades is to _____.

4. Listed below are the normal steps of tracking the main rotor. List the order in which they are accomplished. _____

(1) Make adjustments.	(4) Perform track.
(2) Engine operations.	(5) Check aircraft position.
(3) Mark blades.	

5. The correct engine rpm and manifold pressure for tracking blades is ?

Low track: _____ rpm _____ manifold pressure.

High track: _____ rpm _____ manifold pressure.

6. During tracking operations the servo switch should be in the _____ position.

7. The correct spread allowed when tracking the main rotor blades is _____.

a. 1/4 inch.	c. 1 inch.
b. 3/4 inch.	d. 1/2 inch.

NOTES

1900-1901

1901-1902

1902-1903

1903-1904

1904-1905

1905-1906

1906-1907

1907-1908

1908-1909

1909-1910

1910-1911

1911-1912

1912-1913

1913-1914

1914-1915

1915-1916

1916-1917

1917-1918

1918-1919

1919-1920

1920-1921

1921-1922

1922-1923

1923-1924

1924-1925

1925-1926

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1968-3

PERFORMANCE OBJECTIVES

TRANSMISSION SYSTEM

1. KNOWLEDGES:

a. Hydromechanical clutch.

- (1) Complete statements on the hydromechanical clutch, fluid engagement, and mechanical engagement.
- (2) Worksheet and TM's 55-1520-202-10 and -20.
- (3) In accordance with TM's 55-1520-202-10 and -20.

b. Main gearbox and accessories.

- (1) Complete statements on the purpose and components of the main gearbox and accessories.
- (2) Worksheet and TM's 55-1520-202-10 and -20.
- (3) In accordance with TM's 55-1520-10 and -20.

c. Tail rotor drive shaft, intermediate gearbox, and tail rotor gearbox.

- (1) Complete statements on the description, location, and function of the tail rotor drive shaft, intermediate gearbox, and tail rotor gearbox.
- (2) Worksheet and TM's 55-1520-202-10 and -20.
- (3) In accordance with TM's 55-1520-202-10 and -20.

d. Main rotor brake assembly.

- (1) Match statements on the main rotor brake and its components.
- (2) Worksheet and TM's 55-1520-202-10 and -20.
- (3) In accordance with TM's 55-1520-202-10 and -20.

2. SKILLS: None.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1968-3

STUDENT OUTLINE
TRANSMISSION SYSTEM

1. Hydromechanical clutch.

a. Description. clutch that operates by fluid + mechanical.
Hydromechanical Type

5 hours b. Purpose. 1. allows operation of engine without rotor movement.
2. for smooth rotor engagement, 3. provides positive mechanical engagement,
4. for anti-rotative feature, 5. allows disengagement of rotor without
stopping engine

c. Location.

d. Diverter valve. Located upon right oil cell.
2 circuit breaker if clutch goes
divter valve one circuit breaker

e. Components.

(1) clutch housing

(2) ENGINE RPM, ^{rotor now}
driving train 20 rpm ~~20~~ 18 rpm driven train
to prevent hydrostatic lock.

(3) free wheeling cam some on engine RPM.

(4) roller retainer with 12 roller bridges

What prevents mechanical engagement?

Block plate

(5) actuator with fly weights
plied to clam.

(6) block plate connected to
actuator,

(7) actuator type applied to clam.

f. Function. for fluid payout & nodical
payout.

free wheeling unit for own oil supply
clad pit in fire in heating days

2. Main drive shaft.

a. Description. transmitter to give torque from clutch
to main transmission.
shift rods of tubular metal

b. Location.

c. Function.

d. Components.

for rubber coupling drive shaft.
several over the 10,000' shift demand,
skins will always remain with 5%

trans for 3° forward tilt

3. Main gearbox and accessories.

a. Function.

1. trans. changes L of disc 58°

2. reduces engine RPM to rotor RPM.

3. provides a drive for tail rotor.

4. drives gen for accuaria.

b. Mounting.

5 supports one - starboard.

c. Gear reduction. 11,293 to 1

engine to rotor
with stage planetary type gears.

d. Lubrication.

pressure + oil bath feed.

ON PUMP W/ FILTER
BYPASS + RELIEF VALVE.

line holds 20 quarts of oil. 771L - 0 - 21260 6 mil 2

A/C 30000 STATIC for OIL CHECK.

e. Accessories.

(1) Generator. Driven by main gearbox in 3000-2000 rpm

3000-5000 rpm should produce proper voltage

(2) Blower. to cool the generator.

(3) Primary hydraulic pump. to left of generator.

constant pressure, variable delivery, piston pump.
1500 PSI are set factory.

(4) Hoist pump.

7 piston pump 1250 PSI produced by
which, a constant displacement pump.

A/C Pressure into 26^{out} A/C circuit.

(5) Rotor tach. under greater
rotor tach & engine tach with dogable.

(6) OIL PUMP IS AN ACCESSORY
Oil pump. OIL COOLER 71°C STARTS TO COOLIC
IF OIL BEFOR 71°C WILL BY PASS COOLER

(7) Tail rotor drive. SHAFT, $1/8$ engine turns
RPM.

4. Tail rotor drive shaft. same type of rotor as engine
drive shaft. 4 sections leading to intermediate
drive shaft. 1st section for rotor brake
7 support bearing. 2nd section has oil cooler.

5. Intermediate gearbox.
to change the L of drive 60°
lubricated by splashing gears. (Rols 1 & 2).
oil sump on main trans.

6. Pylon drive shaft.

1 shaft.

7. Tail rotor gearbox. Changes L of drive 90° oil sump on front of 3rd.
by use of magscrew. ③ four pitch change
③ gear reduction of 2 to 1 for tail rotor

8. Main rotor brake system.

Hydraulically operated with single disk
4 stops or pads will stop rotor in 15 sec.

270 PSI pressure in rotor line. MIL H 5604H standard
ACCUMULATOR WITH 275 PSI according to area of work.

pressure switch. Pressure of 10 PSI puts warning
light on instrument panel & stops clutch for emergency.
Relief valve pressure is set at 400 PSI open valve

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1968-3

PERFORMANCE CHECK

TRANSMISSION SYSTEM

1. Complete statements on the hydromechanical clutch, fluid engagement, and mechanical engagement.
 - a. The hydromechanical clutch allows the pilot to start the engine without engaging the rotor.
 - b. The freewheeling unit allows for auto rotation.
 - c. The maximum rpm at which the engine is operated during warmup is 1400 to prevent overheating of drive coupling.
 - d. Throttle must be in the DETENT position to complete the circuit to the clutch pump or diverter when engaging the main rotor.
 - e. The fluid coupling starts the rotor turning smoothly during rotor engagement.
 - f. Oil from the engine is used for operation and engagement of the hydromechanical clutch.
 - g. When the engine rpm is increased 2000 to 2400 rpm, the main rotor will accelerate to approximately 220 rpm.
 - h. When the blocker plate moves to the vertical position and the actuator sleeve slides down, the rollers move to the out side of the freewheeling cam.
 - i. After the mechanic engagement has taken place, the throttle is decreased to 1700 rpm for 2 minutes to allow the oil to drain from the clutch.
 - j. When engine rpm drops below 1250 rpm, the spring moves the actuator up.
 - k. The main rotor drive shaft transmits torque from the clutch to the main gearbox.
2. Complete statements on the function and components of the main gearbox and accessories.
 - a. The main gearbox is mounted with a 3° forward tilt.
 - b. The oil level for the main transmission can be checked by a sight gauge on the left side of the transmission.

c. The oil cooler will bypass oil below 71°C through the bottom of the oil cooler.

d. The low oil pressure warning light receives pressure from the upper thrust bearing

e. The heat stripe indicates when the transmission has been not used or worn

f. The main gearbox drives 7 accessories.

g. The generator is cooled by a giant fan, driven by the accessory section of the main rotor gearbox.

h. The primary hydraulic pump is driven by the main gearbox accessory section.

i. The rotor tachometer indicates RotR rpm.

3. Complete statements on the description, location, and function of the tail rotor drive shaft, intermediate gearbox, and tail rotor gearbox.

a. The 2nd section of the tail rotor drive shaft drives the oil cooler and rotor brake disc.

b. The disconnected coupling allows for the pylon to be folded.

c. The tail rotor blades are prevented from turning when the pylon is folded by a lock pin on the tail rotor drive shaft coupling.

d. The intermediate gearbox changes the angle of drive 60°.

e. The oil level in the intermediate gearbox can be checked by a sight gauge on the right side of the gearbox.

f. The tail rotor gearbox changes the angle of drive 90°.

g. A 2 to 1 gear reduction is received from the tail rotor gearbox.

h. The oil level for the tail rotor gearbox can be checked by dipstick or sight gauge.

i. The tail rotor gearbox houses the pitch lock mechanism.

4. Match the statements on the main rotor brake and its components.

a. <u>3</u> Brake handle	→ Prevents excessive pressure in system.
b. <u>5</u> Accumulator	(2) Four bleed screws for bleeding system.
c. <u>6</u> Master brake cylinder	→ Located between the pilot and copilot overhead the cockpit.
d. <u>4</u> Pressure switch	

e.	<u>2</u> Rotor brake assembly	(4) Prevents operation of the clutch when the rotor brake is on.
f.	<u>1</u> Relief valve	(4) Compensates for thermal expansion and assists in applying the brake. (6) Has a self-contained reservoir on it.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1969-2

PERFORMANCE OBJECTIVES

ROTOR SYSTEMS

1. KNOWLEDGES:

- a. Given a schematic, the student will identify seven major components of the rotor system with six of seven correct.
- b. With the aid of references, the student will be able to complete incomplete statements on the rotor systems without error.

2. SKILLS: None.

NOTES TO THE FINANCIAL STATEMENTS
FOR THE YEAR ENDED DECEMBER 31, 1988

1. **GENERAL**

RESTRUCTURING - FINANCIAL POSITION

CLASSIFICATION

With the exception of the financial instruments held for trading, all financial assets and liabilities are classified as held for investment purposes to the extent possible.

Financial instruments classified as held for trading are measured at fair value with changes in fair value recognised in profit or loss.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1969-2

STUDENT OUTLINE

ROTOR SYSTEMS

1. Description of main rotor system. fully articulated rotor head.
progression & seal. rotor head transmits control to the blades.
torque 2000-2500 of torque nut.
" checked every 200 hours.
2 sets of split cones upper steel lower bronze used to attach
the rotor head.

2. Components.

a. Main rotor hub.

b. Cone assemblies center hub to shaft.

c. Upper and lower plates. made of magnesium
upper plate thinner than the lower.

d. Spacers. 4 spacers between blade hinge point
separates the upper and lower plates.

e. Dampers and damper reservoir.

4 dampers¹ for each hydrolic type self bleeding
HIC H-5606 used
dampers help the landing of the blade.
replace dampers with dampers of same series

f. Hinge assemblies.

4 hinge assemblies 1 for each blade.
vertical pin with longitudinal pin through the
vertical pin
vertical lead + base
longitudinal pin flapping.

g. Sleeve and spindle assembly. attached to horizontal pin.
allow for folding of the blades.

h. Star assembly. rotating star & stationary star. ~~use~~
Programs change direction when either the
rotating liner rotates & transmits flight control
moment to the pitch lever.

i. Control rod assemblies.

stab tail wing went axially. causes
stationary star to move the moving star.
pitch control rods from blade lever to
rotating star.

j. Antiflap and droop restrainers.

cy. typical force over the fly weight out
go out at 125-150 RPM, come in at 75-80 RPM.
droop restrainer hold out 60°
Slope restrainer out at 85 RPM and 85-90 rpm.

k. Main rotor blade.

all blades balanced + ready to use
nylon blades with blades of same series.
Blade has 7° negative twist built in blade.
blade has 23 pockets bonded to the gear.
tip caps facing can be replaced
with pockets between all blade caps.
^{3.} Maintenance.

Type of pitch not to be dropped beyond at 60 ft.
only use mild soap to clean blades.

4. Description of tail rotor system.

tail rotor master yoke
tail rotor gives directional control.
steel rotor hub
Hub allowed to flap 10° and direction 20° total
pitch change links. counter weight limits the feed back
since on tail rotor don't tolerate below number.

5. Components.

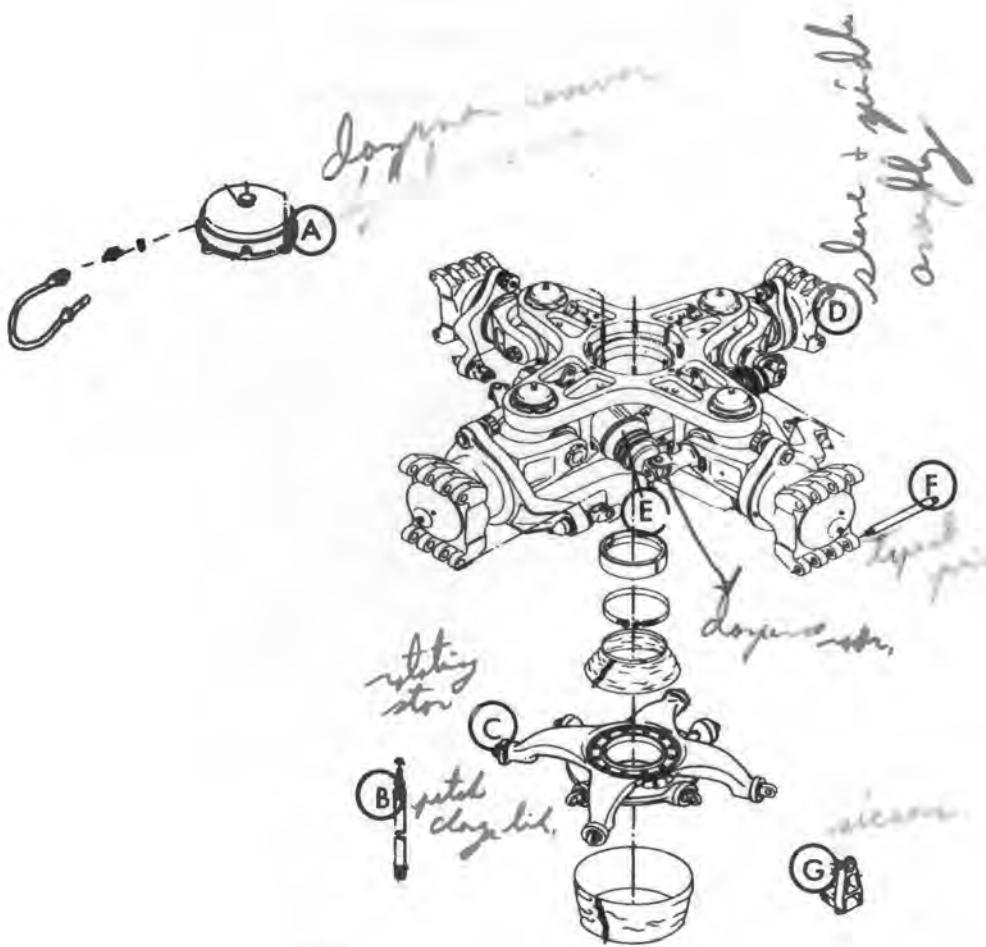
pitch lever held by a typew. pin.

Blade wear check - 20 sheet all
dry scratches on blades.

6. Maintenance.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama


File No. 1969-2

PERFORMANCE CHECK

ROTOR SYSTEMS

1. Using schematic, identify and list below seven main rotor head components with a minimum of six of seven correct.

a. b. c. d. e. f. g.

2. Fill in blanks on general description, location, and operation of the main rotor assembly and tail rotor assembly.

- a. In describing the main rotor system, we say it is fully articulated rotor system.
- b. The purpose of the cone assemblies is to align alone the hub to the shaft.
- c. The damper assemblies provide slowing stops and stopping stops.
- d. The vertical pin allows lead and lag movement of the blades.
- e. There are 23 pockets in each main rotor blade.
- f. The pitch-change beam is held in place on the actuator shaft by a typical pin.
- g. The damper reservoir uses H 5606 hydraulic fluid.
- h. The No. 1 pocket located on the tip of the main rotor blade is protected by tip cap surfing.
- i. The tail rotor hub has nylon flapping stops.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1980-1

PERFORMANCE OBJECTIVES

TEST FLIGHT REQUIREMENTS

1. KNOWLEDGES: Without the aid of notes or references and—
 - a. Given a list of incomplete statements pertaining to test flight requirements, the student will be able to select, from a list provided, the correct words or phrases needed to complete at least seven of the eight statements.
 - b. When given a list of conditions, the student will be able to correctly select all of the conditions for which a test flight is mandatory.
 - c. When given a list of conditions, the student will be able to correctly select all of the conditions which require a maintenance operational check.
2. SKILLS: None.

MUST BE TEST FLOWN

1. A/C moved from ^{NOTES} extended storage
2. A/C must be test flown to complete periodic insp.
3. when engine has been replaced.
4. when cylinder assemblies removed & replaced.
5. when blight rotor or blade removed or replaced.
6. when trans or component removed or replaced.
7. when fixed or movable flight controls moved, replaced, or adjusted
8. cont duplicate start flight by check.
9. installed equipment to check good performance.
10. when picking up on A/C
11. major repair or static changes of A/C
12. determined by unit commanders
13. clutch, drive shaft, gear housing, etc.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1980-1

STUDENT OUTLINE

TEST FLIGHT REQUIREMENTS

1. Purpose. of test flight: any flight which the primary mission is to determine the airworthiness of an AC; or the functional condition of major systems of the helicopter

TBAVR 23-67

2. Mandatory conditions requiring a test flight.

- 1 flight ready ~~ready~~ inspection
- 2 daily inspection ~~is~~ sign and be run up every 72 hours or less a pre oil
- 3 intermediate inspection ~~ready~~ inspection between daily ~~periodic~~
- 4 periodic inspection through ~~ready~~ inspection
- 5 special inspection is a unscheduled inspection told about ~~in~~ - 20
- 6 cylinder inspection [weight + balance] etc.
- 7 test flight

3. Accomplishment.

operational check on accepted on
the ground to see that engine was satisfactory

4. Publications.

TBAVN 23-67

TBAVN 23-16 test flight check for
55-15202-20 ^{any w/c}

injection check on a -
test flight sign off w/c

5. Recording test flights.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1980-1

PERFORMANCE CHECK

TEST FLIGHT REQUIREMENTS

1. Place a checkmark in space(s) below for publications governing test flight and maintenance operational checks for the CH-34C.
 - a. TM 55-1520-202-10.
 - b. TB AVN 23-67.
 - c. TB AVN 23-16.
 - d. TM 55-1520-202-20.
2. From the following list of conditions, select those for which a maintenance operational check is required by placing a checkmark in spaces provided by the letter.
 - a. An inverter has been replaced.
 - b. A rotor blade has been replaced.
 - c. Throttle correlation has been adjusted.
 - d. Fuel boost pump has been replaced.
 - e. Generator has been replaced.
 - f. Tail rotor has been rerigged.
 - g. Aft fuel transfer pump replaced.
3. From the following list of conditions, select those for which a test flight is mandatory by placing a checkmark in spaces provided by the letter:
 - a. The generator has been replaced.
 - b. Tail rotor pitch-change links replaced.
 - c. A periodic inspection has been completed and signed off on the -13.
 - d. Engine-driven fuel pump replacement.
 - e. Marker beacon set replaced.
 - f. An engine has been removed and reinstalled.

g. You are accepting a CH-34C for a ferry mission.

h. The main transmission has been replaced.

i. Fuel boost pump has been replaced.

j. The -13 has an entry of an unusual vibration.

4. Complete the following statements by selecting the correct words or phrases from the list provided in 5 below:

- When performing a test flight, A are prohibited.
- The duration of a test flight will be at least F.
- A waiver is needed to perform a test flight during hours of darkness signed by _____.
- The purpose of a test flight is to G.
- The status symbol denoting a test flight is due is a _____.
- Maintenance operational checks that have been completed are indicated on the _____.
- The test flight checksheet used on test flights must be filed with _____.

5. Complete the statements in 4 above by selecting the correct words or phrases from the following list:

- Passengers and cargo.
- One hour.
- The DA Form 2408-13.
- Red dash.
- Technical inspector.
- Sufficient length to assure the airworthiness of the aircraft.
- Determine the airworthiness of the aircraft.
- Red diagonal.
- AR 95-16.
- The commanding officer.
- The DA Form 2408-12.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1979-4

PERFORMANCE OBJECTIVES

AUTOMATIC STABILIZATION EQUIPMENT

1. KNOW LEDGES:

- a. Control authority.
 - (1) Identify the control authority of all four ASE channels.
 - (2) Worksheet, TM 55-1520-202-10, and notes.
 - (3) In accordance with TM 55-1520-202-10 and TM 11-6615-202-35.
- b. Stick trim system.
 - (1) Select the statement that best describes and correctly explains the operation of the stick trim system.
 - (2) Schematic drawing, worksheet, and ASE DOMT Notices.
 - (3) In accordance with ASE DOMT Notices.
- c. Control panel.
 - (1) Identify and match the operating switches and meter on the control panel.
 - (2) Worksheet, notes, and ASE DOMT Notices.
 - (3) In accordance with TM 11-6615-202-35 and ASE DOMT Notices.
- d. Motor box assembly (period two of four periods).
 - (1) Identify and match the operating switches and electrical adjustments on the motor box assembly.
 - (2) Worksheet and notes.
 - (3) In accordance with TM 11-6615-202-35.
- e. Control gyro and amplifier box.
 - (1) Identify and match the purpose and operation of the control gyro and amplifier box.
 - (2) Diagram, worksheet, notes, and ASE DOMT Notices.

(3) In accordance with TM 11-6615-202-35 and ASE DOMT Notices.

f. Sensors.

(1) Identify and match the purpose, location, and operation of the sensors.

(2) Worksheet, notes, and ASE DOMT Notices.

(3) In accordance with TM 11-6615-202-35 and ASE DOMT Notices.

g. Servomotor assembly.

(1) Identify and match the purpose and operation of the four components of the servomotor assembly.

(2) Diagram, worksheet, and ASE DOMT Notices.

(3) In accordance with TM 11-6615-202-35 and ASE DOMT Notices.

h. Stick cancelers.

(1) Match the purpose and location of the stick cancelers.

(2) Worksheet, notes, and ASE DOMT Notices.

(3) In accordance with TM 11-6615-202-35 and ASE DOMT Notices.

i. Major and minor loops.

(1) Identify and trace with arrows the signals and control movement of the four major and minor loops.

(2) Diagrams, worksheet, notes, and ASE DOMT Notices.

(3) In accordance with TM 11-6615-202-35 and ASE DOMT Notices.

2. SKILLS: Operational check.

a. Perform operational check of ASE.

b. CH-34 trainer, TM 55-1520-202-10CL, ASE DOMT Notices, and TM 11-6615-202-12.

c. In accordance with ASE DOMT Notices and TM 11-6615-202-12.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

6 functions.

File No. 1979-4

new attitude changes STUDENT OUTLINE will be retained by ASE
attitude may be damped with cycle modify, by using flight controls.
AUTOMATIC STABILIZATION EQUIPMENT

1. Purpose and use. improve handling of AC under all conditions
provide absolute static & dynamic stability of AC
provide auto control of cruise flying.
may be engaged at all times except attitude hold.
2. Control authority. 20% of all controls
You trim 100%, open loop spring allows extra 8% of you trim.
3. Fixed-stick concept. 4 channels. pitch, roll, yaw, you
controls main fixed
4. Hydraulic servo. operate pitch valve at standby servo system.
5. ASE components.
 - a. Control panel.
 - (1) Engage button. pitch roll & yaw on with the button
 - (2) Standby button. pitch all channels in standby.
 - (3) "Bar Alt" button. will set the attitude

equivalent to operate ASE
standby servo with off,
115 volt AC in line voltage
79
28 volt DC

(4) OFF button anti-Pilot
standby for altitude

(5) C.G. trim. connects for C.G. changes
forward changes, rear changes due with
cycle.

(6) Null indicator.
monitors position of the rotors while
in flight or on the ground.

(7) Yaw trim. can change up to 7° in normal flight
with yaw trim, each tick mark - 10° at a lower 360°

b. Motor box.

(1) Channel disengage switches. on left of control box
governor switch not connected for flying

(2) Override check switch.
don't use in flight
override check in all channels.

(3) Motor position switch.
used by maintenance

(4) Null indicator control switch.
only in the pitch position

(5) FU null adjustments.
must have A.S.E. in standby

(6) Tachometer generator adjustments.
adjust from 4-6 other than the
up to 100% must not be increased before
adjusting.

4 Sensors

(7) Magnetic amplifiers.

gyro 2 mm.

out of panel

5-2 capsule is tied in to motor body.

c. Geometric control

c. Control gyro and amplifier box.

(1) Vertical gyro assembly. called contain give roll & pitch change signal double gimble gyro for roll & pitch

(2) 12-signal adjustment panel.

so system regulated on various A/C adjust according to desir.

(3) Five-signal adjustment panel.

note coarse adjustment, the last 2 disks for carrying null indicator.

d. Sensors.

changes rotation into a proportional electric out put used to detect the error of the correction

e. Servomotor assembly.

will tell 1. amount of error 2. direction 3. duration (1) Motor. introduce the a/c signal into flight control system motor changes electrical energy into rotary mechanical motion

1. amount of error
2. direction
3. duration

(2) Leadscrew and link assembly

transfers rotary motion to linear motion

ten turns on thread shift 5 turn end way.

(3) Transducer.

trans changes linear motion to an electrical signal. electrical signal is - but opposite from received signal.

(4) Tachometer generator.

1. drives motor. moves.

2. acts as electrical brake for motor

3. prevents motor from over shooting

4. prevents motor from oscillating

motor over 4,400 RPM

81

start & stop at 4,400 rpm

with max travel of 5 turns.

6. Major loop. a turn of events starting at one place, finishing at the starting place.
a. Sensor. detect errors in flight path.
b. C. G. and A box. gyro take 2 $\frac{1}{2}$ - 3 min to get system暖 up.
c. Motor box.
d. Servomotor assembly.
e. Hydraulic servo.

7. Minor loop. centers the 150 motor, by sending out
a. Transducer. opposite signal to gyro.
b. Tachometer generator.

8. Pitch channel.
a. Vertical gyro.
b. Amplifier.
c. Magnetic amplifier.
d. STICK Cancelers. located under floor below cyclic
is the device for CGA to work from.

A S C cost 30,000 for equipment
not counting installation.

e. C. G. trim. works some on strong cyclic ~~Bank~~
to maintain attitude of a/c

f. Flight controls.

9. Roll channel. Roll LAGUE INTEGRATOR, lags the signal
from 6-8 seconds, to oppose ground resonance.

10. Altitude channel. Barometric altitude controller.
a. Controller. pressure sensing device, bellows sealed at
sea level pressure, and changes with altitude.
b. ENGAGE button. 1000' through 50,000' one electrical range
should be a/c with a ± 250 altitude
c. OFF button.

11. Yaw channel. no controller action
a. Directional gyro.

b. Control authority.

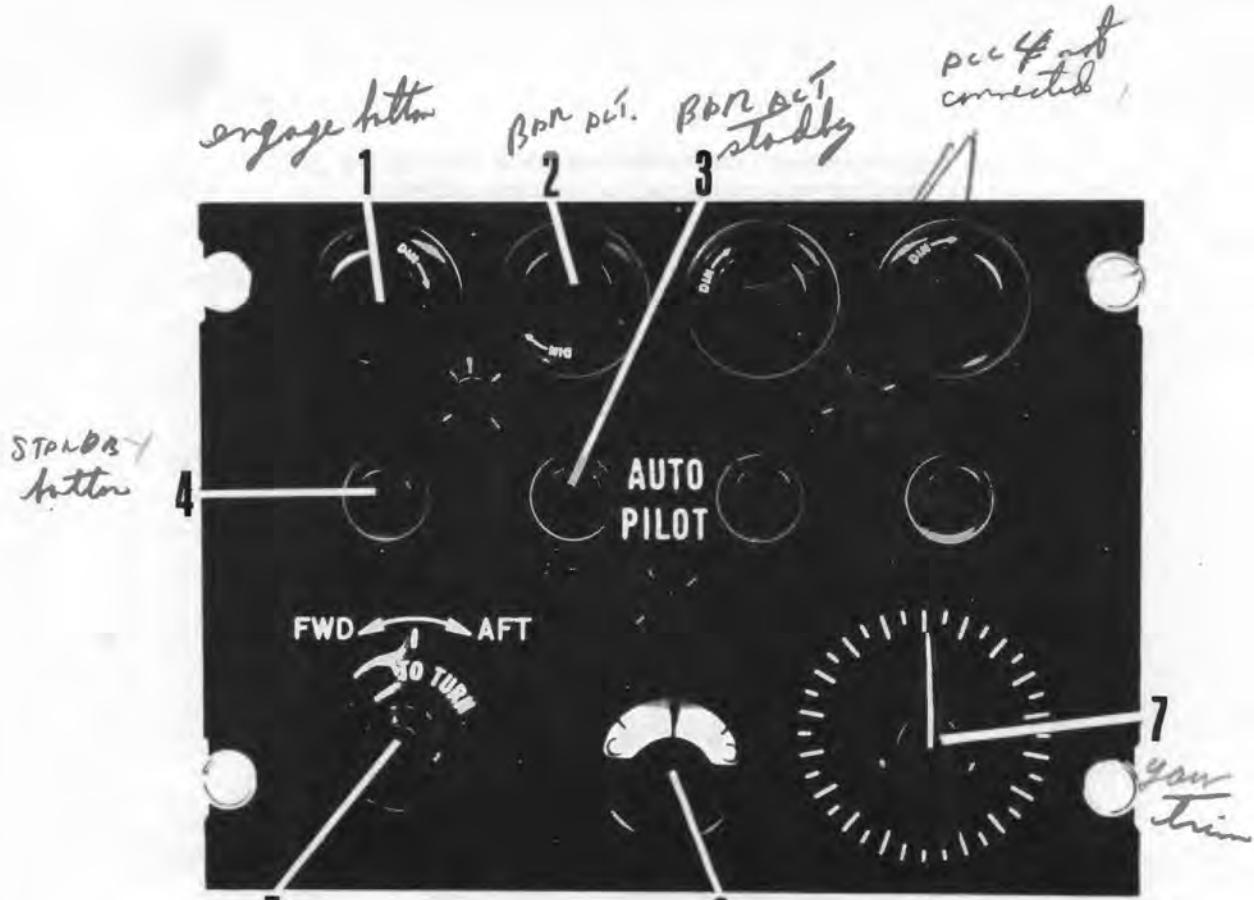
c. Pedal switches.

d. Yaw trim.

e. Yaw turn loop motor.

12. Automatic stabilization release switches.

NOTES


DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1979-4

PERFORMANCE CHECK

AUTOMATIC STABILIZATION EQUIPMENT

1. From the list below, identify the control authority of all four ASE channels.
 - a. 10 percent each side of neutral. A Pitch.
 - b. 20 percent each side of neutral. B Roll.
 - c. 20 percent each side of neutral during open-loop operation. B Altitude.
 - d. 100 percent during closed-loop operation. E Yaw.
 - e. 20 percent during closed-loop and 100 percent during open-loop operation.
2. Circle the letter of the statements listed below that best describe and correctly explain the operation of the stick trim system.
 - a. Operates from the 115-volt A. C. system and provides the helicopter with a fixed-stick concept. When the master switch is in the ON position, the magnetic brake is energized, and the cyclic stick will maintain this position.
 - b. Operates from the 28-volt D. C. system and provides the helicopter with a fixed-stick concept. When the master switch is in the STICK TRIM position, the magnetic brake is not energized, and the cyclic stick will maintain the position the aviator has selected.
 - c. Operates from the 28-volt D. C. system and provides the helicopter with a fixed-stick concept. When the master switch is in the stick trim ON position, the aviator must depress the trim button on the cyclic control stick to energize the magnetic brake to reposition the cyclic control and set up a new attitude.
3. Using the control panel shown on page 24, identify the numbered operating switches and meter with the blank provided and the function of each.

Switches

Functions

5 C.G. trim

6 Null indicator

1 Engage button

3-4 Standby button

2 "Bar Alt" button

3 "Bar Alt OFF" button

7 Yaw trim

3+4 Disconnects sensors from major loop.

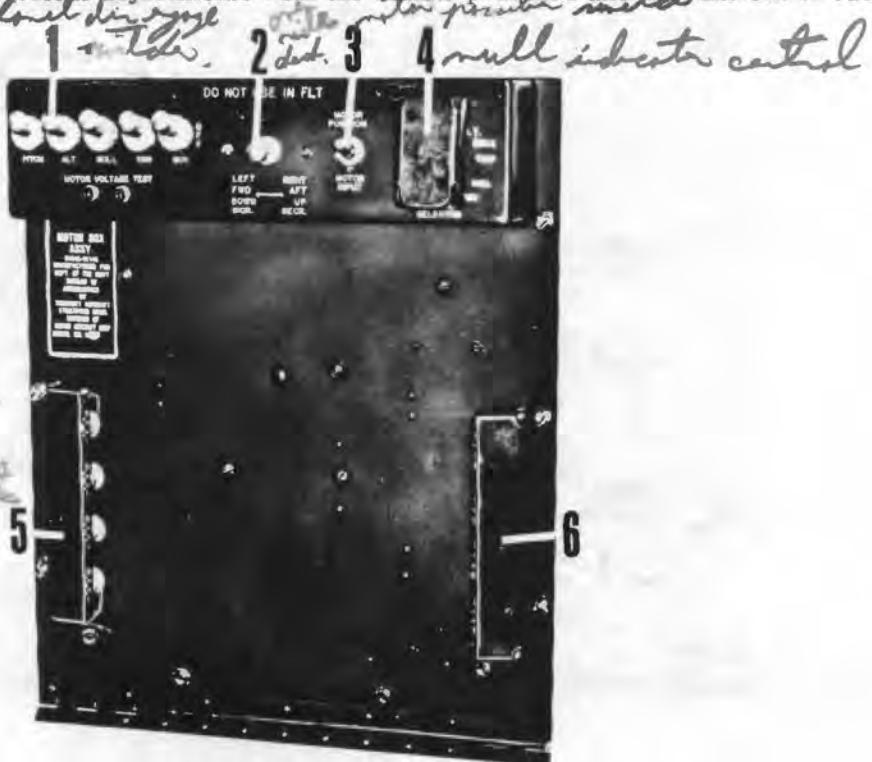
2 Engages altitude controller.

5 Used to compensate for fuel consumption.

6 Monitors motor position.

1 Connects sensors to major loop (pitch, yaw, roll).

3 Nulls out altitude controller signal.

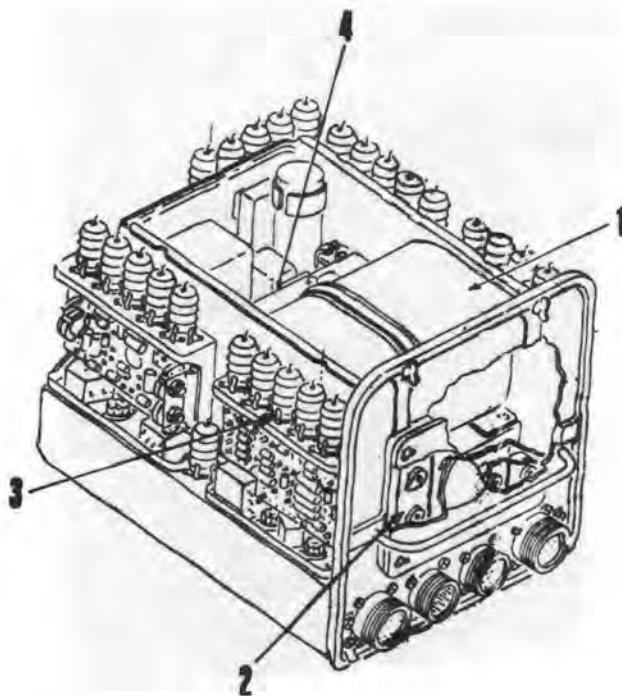

1+2 Connects all four channels to major loop.

3 Cannot be engaged on ground.

3+4 Not used on Army helicopters.

7 Used for small heading corrections.

4. Using the motor box assembly below, identify and match the numbered operating switches and electrical adjustments with the blanks provided and the function of each.


Switches

2 Override check.
4 Null indicator control.
3 Motor position.
1 Channel disengage.
6 FU null.
5 Tachometer generator.

Functions

2 Sends maximum signal to all four servomotors.
1 Disconnects power to individual servomotors.
4 Selects servomotor to be monitored on null indicator.
6 Used to electrically center servomotors.
5 Used to adjust voltage to tachometer generators.
NOTE Senses error signal for pitch-and-roll channels.
NOTE Allows aviator to monitor servomotor.
NOTE Adjusts null indicator for sensitivity.

5. Using the control gyro and amplifier box shown below, identify and match the purpose and operation of the numbered components with the blanks provided.

Components

3 Amplifiers.
1 Vertical gyro.
4 Five-signal adjustment panel.
2 12-signal adjustment panel.

Purpose

4 Adjust null indicator centering and sensitivity.
2 Allows C.G. and A box to be used on many different versions of helicopters.
1 Senses error signals for the pitch-and-roll channels.
3 Receives error signal from sensors.
4 Senses error signals for yaw channel.

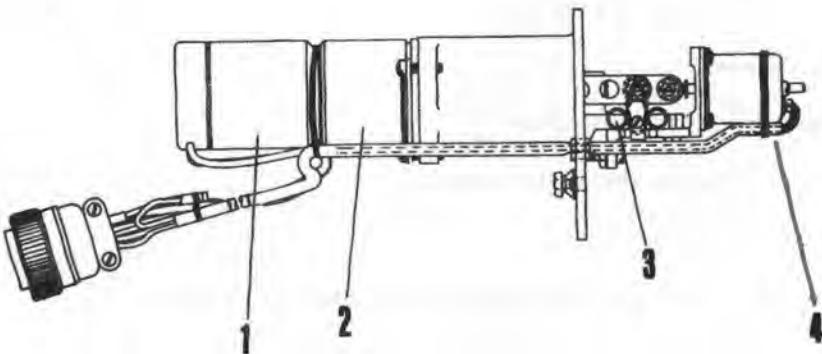
6. From the list below, identify and match the purpose and operation of the sensors.

- a. Vertical gyro.
- b. Barometric altitude controller.
- c. J-2 compass.

B Sensor for altitude channel.

A Sensor for pitch-and-roll channel.

C Sensor for yaw channel.


A Requires a 2 1/2- to 3-minute warmup period to engage.

B Only engaged at a zero rate of climb or descent.

A Changes mechanical motion into proportioned electrical signal.

A Two-gimbal gyro.

7. Using the servomotor assembly below, identify and match the purpose and operation of the four numbered components with the blanks provided.

<u>Components</u>	<u>Purpose</u>
— Motor.	— Change mechanical motion into electrical signal.
— Tachometer generator.	— Sends signals to recenter motor.
— Leadscrew and link assembly.	— Dampens motor movement.
— Transducer.	— Acts as electrical brake on servomotor.
	— Changes electrical energy into rotating mechanical motion.
	— Limits ASE to 20 percent authority of flight control range.
	— Signal is proportional but opposite phase to signal that displaced motor.
	— Prevents overshoot.
	— Operates only in standby condition.
	— Adjusted by FU null potentiometer.
	— Provides aviator with artificial feel in cyclic controls.

8. Select the correct statement below that describes the purpose and function of stick cancelers.

- The stick canceler will develop a signal proportional to cyclic stick position from neutral. Whenever the aviator desires an attitude other than true level, the stick must be displaced which, in turn, develops a signal equal in amplitude but effectively opposite in phase to gyro signal.
- The stick canceler will develop a signal proportional to cyclic stick position of 20 percent of the entire pitch-and-roll flight control range. Whenever the aviator desires an attitude change, the stick must be displaced which, in turn, develops a signal equal in amplitude and opposite phase to the gyro signal.
- The stick canceler will develop a signal proportional to cyclic stick position from neutral. Whenever the aviator desires an attitude other than true level, the stick must be displaced which, in turn, develops a signal equal in amplitude in phase to the gyro signal. The stick canceler also allows the aviator to change attitude without disengaging the ASE.

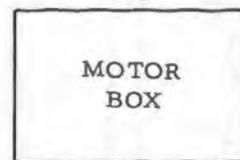
9. Major and minor loops. From the list below, identify and match the components and components' functions; also trace with arrows the signals and control movement of the four major and minor loops.

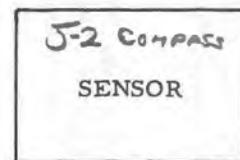
<u>Components</u>	<u>Component Functions</u>
a. Vertical gyro.	— Sensor for yaw channel.
b. J-2 compass.	— Two-gimbal gyro.
c. Barometric altitude controller.	— Limits ASE to 20 percent authority.
d. Amplifier.	— Disconnects power to individual servomotor.
e. C. G. and A box.	— Sensor for altitude channel.
f. Servomotor assembly.	— Sensor for pitch-and-roll channel.
g. Transducer.	— Directs flow of hydraulic fluid.
h. Tachometer generator.	— Changes mechanical motion into proportional electrical signal.
i. Motor box.	— Dampens motor movement and prevents overshoot.
j. Star assembly.	— Contains magnetic amplifiers and channel disengage switches.
k. Hydraulic servo pilot valve.	

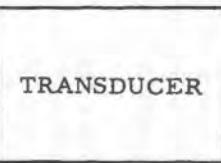
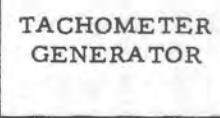
SENSOR J-2 COMPAS your chisel *

YAW CHANNEL

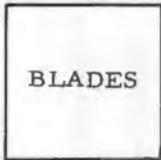
MAJOR LOOP


#2

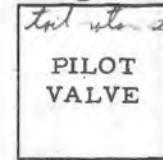

#4



#3

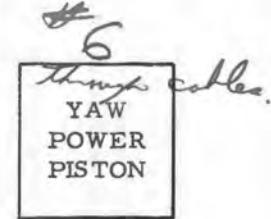
#1



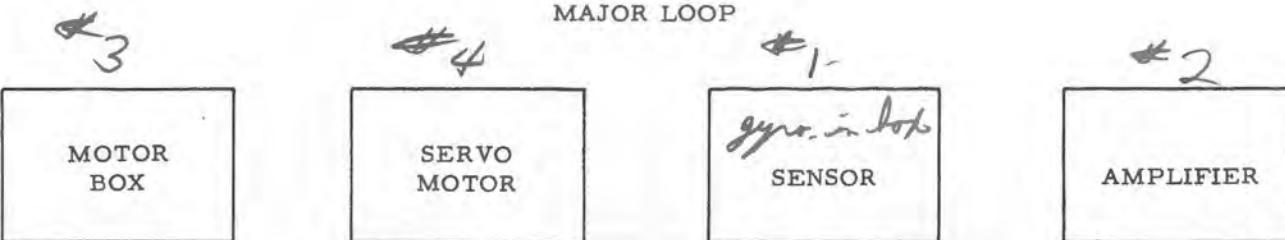
92



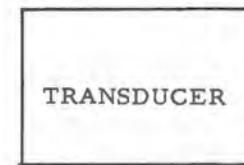
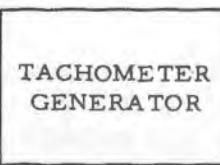
MINOR LOOP


#7

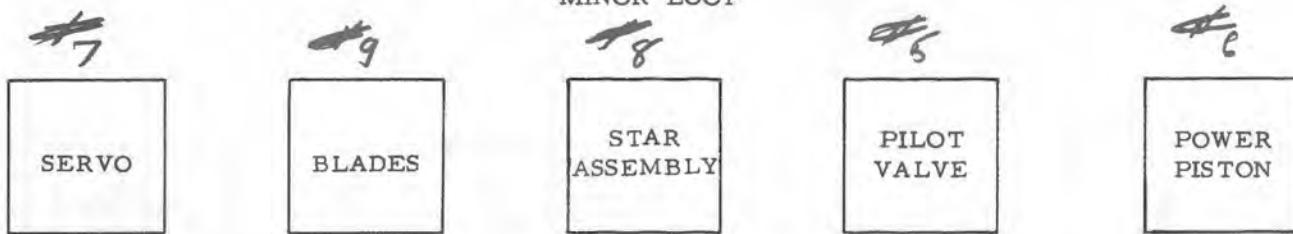
#5
tot stator



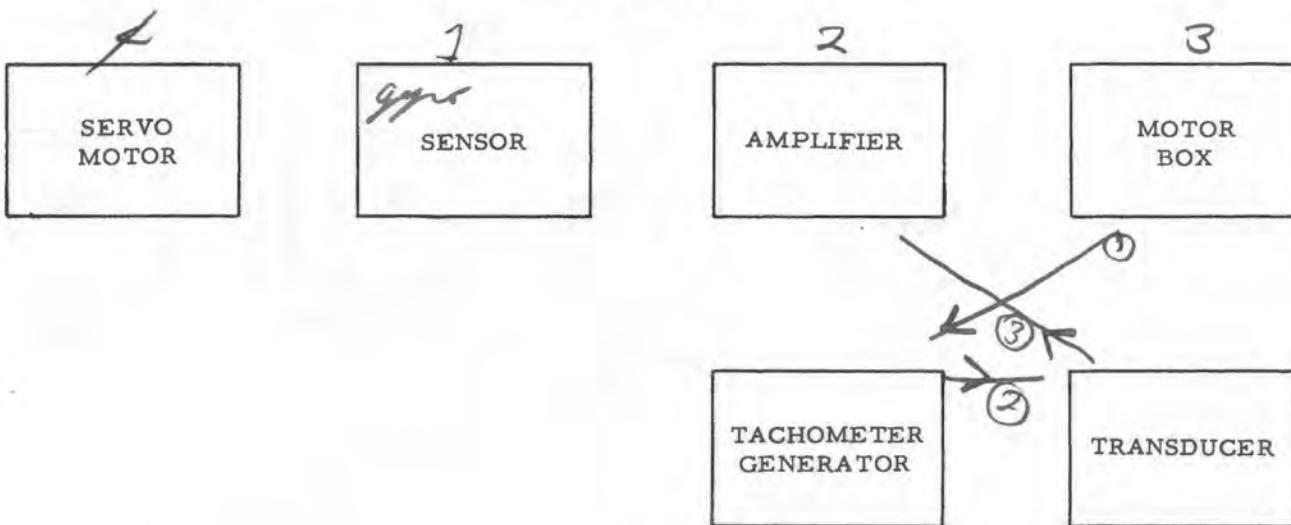
#6

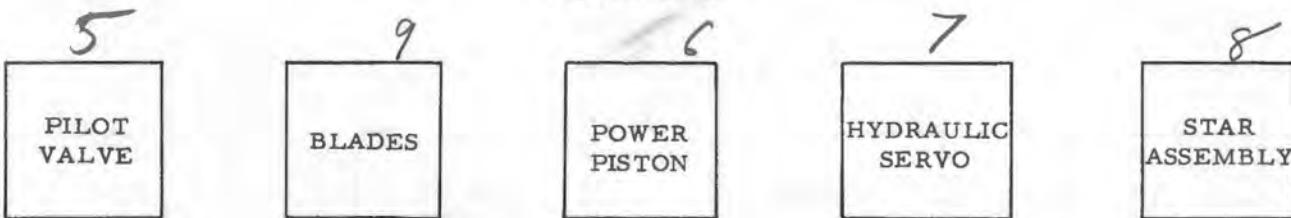
ROLL CHANNEL


MAJOR LOOP

93

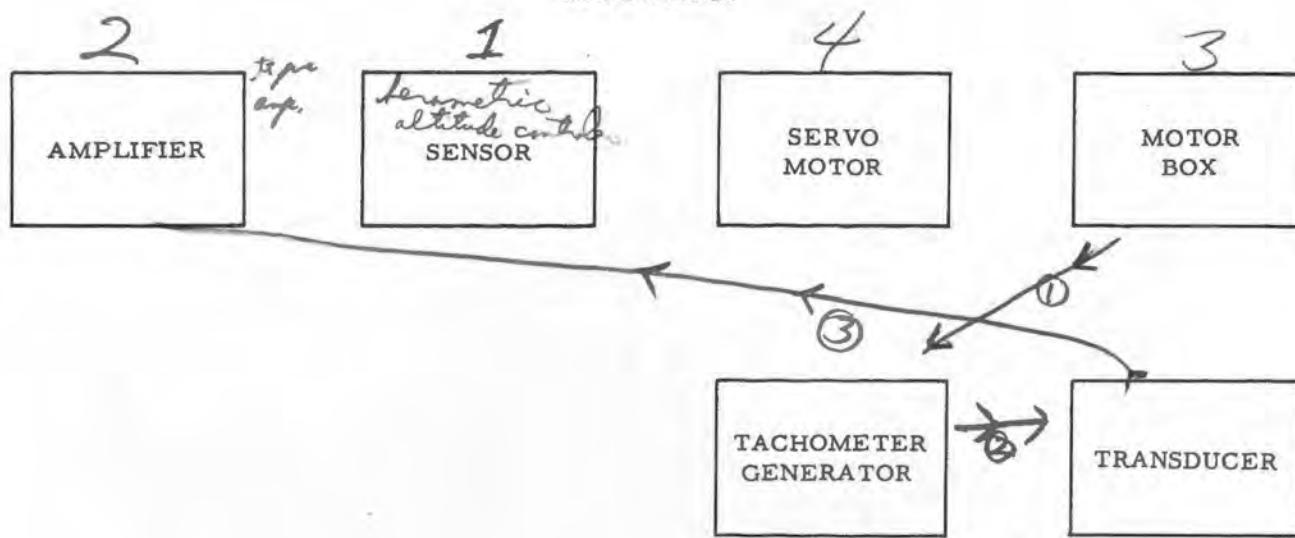


MINOR LOOP


PITCH CHANNEL

MAJOR LOOP

64


MINOR LOOP

56


ALTITUDE CHANNEL

MAJOR LOOP

MINOR LOOP

It deals with the cone.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1971-2

PERFORMANCE OBJECTIVES

ELECTRICAL SYSTEM

1. KNOWLEDGES:

- a. With the aid of references, the student will be able to complete statements on the description, operation, and location of the generator and its protective circuit, without error.
- b. With the aid of references, the student will be able to select from a group of statements on the electrical system, those statements which are true or false, without error.
- c. Given a list of the three bus bars, the student, from memory, will be able to write the names of the power sources of each bus bar, without error.
- d. When given a list of electrical components, the student, from memory, will be able to select those components which are powered by each bus bar with eight of 10 correct.

2. SKILLS: None.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1971-2

STUDENT OUTLINE

ELECTRICAL SYSTEM

1. General description.

28 Volts DC

115 + 20 Volts AC

DC system protected by circuit breakers.

AC protected by fuses. except glide slope for a circuit breaker

Both systems single wire negative ground.

2. Components of the D.C. system.

a. Battery. used as an emergency power system when generator fails in flight.

24 VOLTS 25 AMP LEAD ACID BATTERY

b. Generator. driven by main engine. generator \rightarrow produces 30 volts 200 AMPS between 3000-8000 RPM

c. Voltage regulator. carbon pile
adjust to 28 VOLTS output.

d. Overvoltage relay. senses over voltage condition
operates a trip coil in field control
relay will kick out the generator
reset field control relay to restart generator.

e. Field control relay.
protects the generator from putting
out too much voltage & lets the generator off.

f. Reverse-current cutout relay.
cuts the generator into the system
when the battery voltage gets below its output.

g. Generator failure warning light relay.

light comes on when generator goes off

3. Distribution of the D.C. power system.

1. Battery bus cabin lights inspection lights on level gauges.
2. Primary bus supplies power to start & fly only
3. Secondary bus power to equipment that are not necessary for flight.
battery will not carry all of secondary bus & has to secondary bus for equipment.

4. Bus bars. + three power sources

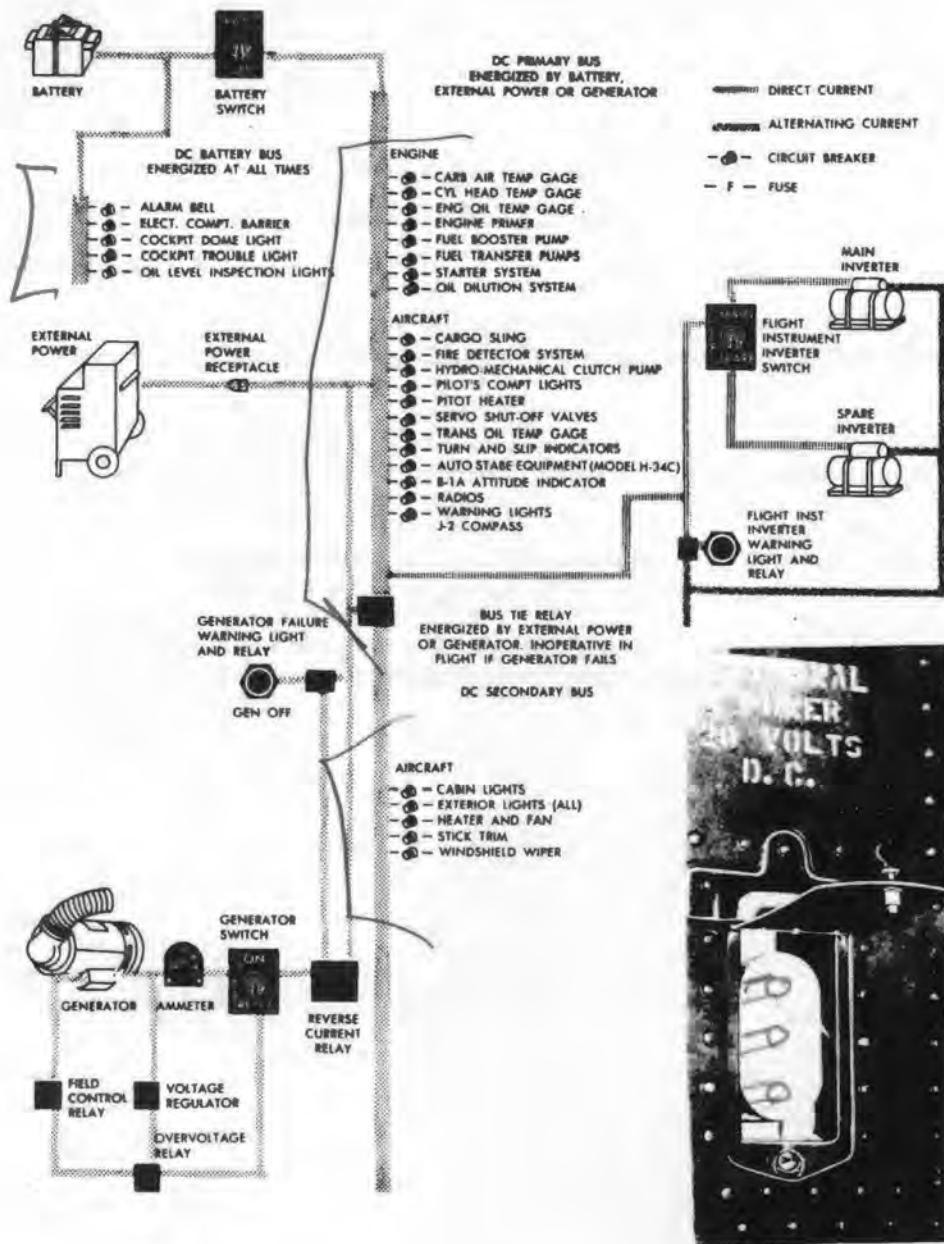
comes battery bus, quick disconnect preflight & inspection

Primary bus

1. battery
2. generator
3. A.P.U. or external power.

secondary bus

1. generator. has the relay for ¹⁰⁰ second secondary bus to the
2. A.P.U.


5. A.C. power system. has 2 inverters a ^① main & spare
powered by 28 volt DC from
primary bus.

They are a DC motor turning an AC
generator, produces 115 AC

26 volt DC auto transformer steps
down 115 AC down to 26 volt AC
located on right side of battery box in
clutch compartment.

AC system on fuses.

DC circuit breaker.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1971-2

PERFORMANCE CHECK

ELECTRICAL SYSTEM

1. Complete the following statements on the description, operation, and location of the generator and its protective circuit:
 - a. The generator on the CH-34 helicopter is described as a 30 volt 200 ampere hour.
 - b. The generator is mounted on the accessory cowl near the transmission.
 - c. The generator is cooled by a quieth blower, mounted on the accessory cowl of the transmission.
 - d. The generator current enters the primary bus through the voltage regulator.
 - e. The reverse-current relay protects the generator from being _____ when battery voltage exceeds generator output voltage.
2. Answer the following statements as true or false by entering "T" or "F" in the blank spaces below:
 - a. F The battery is a 28-volt, 36-ampere-hour, lead-acid.
 - b. T The voltage regulator is adjusted to 28 volts.
 - c. F The overvoltage relay cuts the generator out of the system.
 - d. T The generator reset switch is located in main instrument panel.
 - e. F Both main and spare inverters are on during flight.
 - f. F All items necessary for flight are energized by the secondary bus.
 - g. T Whenever starting and running up aircraft, an APU should be used.
 - h. T The inverters are rated at 115 volts, 500 amperes.
3. Complete the following statements:
 - a. The battery bus is energized by battery _____.

b. The primary bus is energized by battery APU generator

c. The secondary bus can be energized by the APU or generator only.

4. Indicate the power source for each component listed below. Write Battery, Primary, or Secondary by each component in the blank spaces below.

- a. primary Engine oil temperature gage.
- b. secondary Cockpit dome light.
- c. secondary Starter.
- d. secondary Heater.
- e. battery Crew alarm.
- f. primary Fuel pumps.
- g. secondary Stick trim.
- h. battery Inspection lights.
- i. secondary Windshield wiper.
- j. primary Oil dilution valve.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1974-1

PERFORMANCE OBJECTIVES

LANDING GEAR AND BRAKE SYSTEM, CH-34

1. KNOWLEDGES:

a. Landing gear.

- (1) Match landing gear components with their description, location, and operation.
- (2) Worksheet and TM 55-1520-202-20.
- (3) In accordance with TM 55-1520-202-20.

b. Brake system.

- (1) Match brake system components with their description, location, and operation.
- (2) Worksheet and TM 55-1520-202-20.
- (3) In accordance with TM 55-1520-202-20.

c. Malfunctions.

- (1) Match malfunctions with corrective action required.
- (2) Worksheet and TM 55-1520-202-20.
- (3) In accordance with TM 55-1520-202-20.

2. SKILLS: None.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1974-1

STUDENT OUTLINE

LANDING GEAR AND BRAKE SYSTEM, CH-34

1. Main gear. *fixed gear.*
 - a. Shock strut.
air oil type strut.
cushion the crash.
 - b. Leg and axle assembly.
raise leg up 45° & pull it out
rod rod behind wheel *6 jod pods on S/C*
 - c. Wheel and tire assembly.
hydraulically vented brakes
split rim type wheel
1100 x 12 inflates to tire size on center, only tire.
2. Tailwheel assembly.
 - a. Shock strut.
 - b. Yoke and fork assembly.
suspense tail wheel
 - c. Tire.
600 x 6 only ~~*flat inflate to*~~
only radius.

3. Tailwheel lock control assembly.

a. Handle.

b. Cable.

c. Locking pin.

d. Indicator flag.

4. Brake system.

a. Type. *single disk triple slot
self adjusting independent*

b. Components.

5. Common malfunctions and corrective action required.

6. DA Form 2408-13 entries.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1974-1

PERFORMANCE CHECK

LANDING GEAR AND BRAKE SYSTEM, CH-34

Match landing gear components in column A with the maximum number of items in column B that best describes the components, location, and operation.

Column A	Column B
1. Shock strut.	3 Has split-rim mounting on two roller bearings.
2. Leg and axle assembly.	5 Is spring-loaded with a shear section.
3. Wheel and tire assembly.	— Is attachment point for shock strut.
4. Yoke and fork assembly.	— 1100x12, nylon, 6-ply.
5. Tailwheel locking device.	— Activated by handle in cockpit and attaching cables.
6. Brake master cylinder.	— Has a tiedown ring and jacking point mounted on it.
7. Parking brake valve.	— Has a self-centering device.
8. Brake assembly.	— Mounted to the leg and axle assembly and operates hydraulically.
	— Is a shock absorber.
	— Works on air and hydraulic oil.
	— Provides attaching points for shock strut and tailwheel.
	— Has indicator flag.
	— Prevents tailwheel from oscillating in flight.
	6 Located on pilot's directional pedals and creates pressure.
	7 Can be used to level helicopter.

- ____ Mounts to tail cone section of helicopter.
- ____ Has three movable and three stationary pucks.
- ____ Has self-adjusting pins to show wear.

Match malfunctions in column A with corrective action required in column B.

Column A	Column B
1. Shock strut bottomed out.	____ Replace pucks.
2. Tire does not have proper rolling radius.	____ Replace master cylinder.
3. Static ground wire not touching ground.	____ Bleed brake system.
4. Water or mud in wheel assembly.	____ Clean and lubricate bearings.
5. Brakes are spongy.	____ Replace or lengthen wire.
6. Brakes hold but bleed down.	____ Inflate to proper air pressure.
7. Adjustment pin flush with housing.	____ Recharge.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1976-4

PERFORMANCE OBJECTIVES

WEIGHT AND BALANCE

1. KNOWLEDGES:

- a. Theory and terms used in weight and balance.
 - (1) Complete statements on the theory and terms used in weight and balance.
 - (2) Worksheet.
 - (3) In accordance with TF 46-2339, TM 55-1520-202-10, and TM 55-405-9, with at least 80 percent correct.
- b. Weight and balance forms and publications.
 - (1) Match weight and balance forms and publications with statements of their description and uses.
 - (2) Worksheet.
 - (3) In accordance with TM 55-1520-202-20, TM 55-405-9, and AR 95-16, with at least 80 percent correct.

2. SKILLS: Completion of DA Form 365F.

- a. Make proper entries on DD Form 365F.
- b. DD Form 365F, TM 55-1520-202-10, and problem sheet.
- c. In accordance with TM 55-1520-202-10 and TM 55-405-9, with 100 percent correct.

NOTES

weight \times arm = moment,
copied in
inch pounds.

moment \div weight = CG

basic moment + basic weight ~~total moment~~

* CG center of gravity total moments \div by total weight.
138.7 for a 34 inch CG

130.7 forward limit

146.7 AFT LIMIT

new add weight moment.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1976-4

STUDENT OUTLINE

WEIGHT AND BALANCE

1. Definitions.

- a. Basic weight A/c structure with fixed equipment
Basic weight, with trapped fuel & oil.
Basic weight, const, ferry, and evacatin, the type.
- b. Operating weight useable weight items which will
remain constant for type of mission
eng. crew etc.
- c. Total A/c weight, total operating weight with fuel
ammunition
- d. Gross weight total weight of A/c with everything
in it, plus cargo.
- e. Gross take off weight 13,600 lb.
- f. Gross landing weight.
- g. maximum gross weight.

all aircraft any total weight + total arms divide
give a/c will give you advance arm of A/C

h. refire datum line. line on a 34 right in
front of the A/C

i. A/P of distance from RDL measured in inches
and station scale.

Moment is basic weight \times length of arm.

2. TM's and AR's pertaining to weight and balance.

a.

b. covers all Army AC
TM 55-405-9 with aircraft serial number. any station station weight +
blow.

(1) DD Form 365.

record of weight & balance personnel for
the unit

(2) DD Form 365A.

basic weight deck list

anything that has an assigned location in the
A/C work if mounted or not on form.

(3) DD Form 365B.

A/C actual weight after weighing.

provides basic weight.

field maintenance to weigh AC must be weighed 1 a year.

(4) DD Form 365C.

continuation history of weight & moment of A/C

(5) DD Form 365F.

weight & balance clearance form.

if no previous valid form F is not on record.

gross weight, net & CG

c. TM 55-1520-202-10.

body data sheet 365F.

test gunner

d.

AR 95-16.

governs all weight & balance.

Class I A/C can weigh one A/C to figure
weight & balance for the 1
one of four F under alternate load
is used.

Class II

CG can be readily checked if load wrong.
365F necessary if no form on record for
type of load. and A/C must be
weighed and CG must be
checked and gear

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1976-4

PERFORMANCE CHECK

WEIGHT AND BALANCE

1. Theory and terms used in weight and balance. In the blanks, in the statements below, place the word or words which will make the statements true.

Weight	Reference datum line
Balance	Basic weight
Moment	Operating weight
Arm	Total aircraft weight
Center of gravity	Gross weight
Center-of-gravity range	Gross landing weight
Class I aircraft	Class II aircraft

- a. The reference datum line is that point from which the arm is measured.
- b. The weight times the arm equals the moment.
- c. Magnetic pull is the force exerted by the earth's magnetic field on an object.
- d. Fixed equipment, trapped fuel and oil, and the aircraft structure make up the basic weight aircraft weight.
- e. The usable load is that amount a load can be shifted and still be in the center-of-gravity limits.
- f. The useful load is the gross weight minus items expended during flight.
- g. A flexible aircraft is an aircraft whose weight and balance limits can sometimes be exceeded by alternate loading arrangements.
- h. The ARM is the distance from the RDL to a component and is measured in inches.
- i. Station 138.7 is the ideal center of gravity for the CH-34.
- j. The operating weight weight is the operating weight plus the fuel and ammunition.
- k. The class II aircraft requires a DD Form 365F for each flight for which no previous valid form is available.

1. take off weight includes the basic operating and total aircraft weight plus troops and cargo.

m. The point at which an aircraft will balance, if it were possible to support the aircraft at that point, is known as the center of gravity.

n. The arm multiplied by the weight of an object is known as the moment.

o. Balance is that condition which exists when the center of lift is directly over the center of gravity.

2. Weight and balance forms and publications. In the blanks beside the statements below, place the letter of the form or publication to which the statement applies.

a. DD Form 365.	f. Chart E.
b. DD Form 365A.	g. TM 55-1520-202-10.
c. DD Form 365B.	h. TM 55-405-9.
d. DD Form 365C.	i. AR 95-16.
e. DD Form 365F.	

(1) _____ Is used as a worksheet when weighing an aircraft.

(2) _____ Prescribes the intervals at which aircraft are weighed.

(3) _____ Is used to inventory the aircraft prior to weighing.

(4) G Can be used for computing the fuel and oil when making out the DD Form 365F.

(5) A Is a record of weight and balance personnel.

(6) _____ Contains a sample copy of all weight and balance forms and is assigned to the aircraft by a serial number.

(7) _____ Must be filled out prior to takeoff for which no previous valid form is available.

(8) B Contains the most current basic weight for the aircraft.

(9) C Contains Chart E and information on weight and balance definitions.

(10) E Is a form on which the pilot can change the takeoff center of gravity and the landing center of gravity.

(11) D Originated by the manufacturer and contains all equipment that is on or can be installed on the aircraft.

(12) _____ Is a form that is used to list all equipment that is part of the basic weight, but is not on the aircraft when it is being weighed.

(13) _____ List all structural modifications which have been completed on the aircraft.

(14) _____ Explains what class I and class II aircraft are, and who is responsible for weight and balance data.

(15) H Explains how an aircraft is weighed and what equipment is required.

(16) _____ Contains a center-of-gravity table for computing weight and balance when filling out a DD Form 365F.

(17) _____ List the weight, moment, arm, and station of each component on the aircraft.

(18) _____ Contains a column which is checked by the manufacturer before delivery of the aircraft.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1976-4

PROBLEM SHEET - PERIOD THREE

WEIGHT AND BALANCE

Date: Current date.

Type aircraft: CH-34C.

From: Hanchey AAF.

Mission: Service.

Aircraft Serial No: 57-1770.

To: Macon, Georgia.

Pilot: You.

Basic Weight: 8,149.

Basic Moment: 11,166.1

Oil: 10.5 gallons.

Crew: 3 @ 200 pounds each.

Crew Chief: Station C-15.

Takeoff Fuel: 263 gallons.

Passengers: 5 @ 200 pounds each.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1976-4

SOLUTION SHEET - PERIOD THREE

WEIGHT AND BALANCE

NOTE: See solution sheet on following page.

NOTE.—THIS TRANSPORT CLEARANCE FORM HAS RESULTED FROM TRIPARTITE AGREEMENT AND NO FURTHER CHANGES MAY BE MADE TO IT WITHOUT PRIOR CONSIDERATION BY TRIPARTITE AUTHORITIES.

WEIGHT AND BALANCE CLEARANCE FORM F TRANSPORT (USE REVERSE FOR TACTICAL MISSIONS)							Cross References RAF Form 2570 ROCAF Form F. 115 C SOM. 5-61 (W/57)				FOR USE IN T.O. 1-1B-40 AN 01-1B-40 & TM 55-403-9			
DATE Current		AIRCRAFT TYPE CH-34C			FROM Hanchey AAF			HOME STATION Hanchey AAF						
MISSION/TRIP/FLIGHT/NO. Service		SERIAL NO. 57-1770			TO Macon, Ga.			PLOT You						
LIMITATIONS				REF 1 BASIC AIRCRAFT (From Chart C) 2 OIL (10.5 Gal.) 3 CREW (No. 3) 4 CREW'S BAGGAGE 3 5 STEWARD'S EQUIPMENT 6 EMERGENCY EQUIPMENT 7 EXTRA EQUIPMENT 8 OPERATING WEIGHT 9 TAKEOFF FUEL (263 Gal.) 10 WATER INJ. FLUID (Gal.) 11 TOTAL AIRCRAFT WEIGHT	ITEM			WEIGHT		INDEX OR MOM/				
ALLOWABLE GROSS WEIGHT	13600	13600			8 1 4 9 0 1 1 1 6 6 1									
TOTAL AIRCRAFT WEIGHT (Ref. 11)	10405				7 8 8					5 0 0				
OPERATING WEIGHT PLUS ESTIMATED LANDING FUEL WEIGHT		9607												
OPERATING WEIGHT (Ref. 11)														
ALLOWABLE LOAD (Ref. 18) (IN SMALLS OF 1000)	3195	4533			6 0 0 0					6 3 0 0				
PERMISSIBLE C. G. TAKEOFF	FROM 130.7	TO (% M.A.C. or IN.) 146.7												
PERMISSIBLE C. G. LANDING	FROM 130.7	TO (% M.A.C. or IN.) 146.7												
LANDING FUEL WEIGHT	240													
REMARKS					12	DISTRIBUTION OF ALLOWABLE LOAD (PAYLOAD)								
Use 92.3 gals aft tank Use 70.7 gals center tank Use 60 gals fwd tank					COMPT	UPPER COMPARTMENTS		COMPT	LOWER COMPARTMENTS					
				NO.	PASSENGERS	CARGO	NO.	PASSENGERS	CARGO					
				A			C-14	1 200		2 0 0 0	2 2 5 0			
				B			C-15	1 200		2 0 0 0	2 6 0 0			
				C			C-16	1 200		2 0 0 0	2 9 5 0			
				D			C-17	1 200		2 0 0 0	3 3 0 0			
				E			C-18	1 200		2 0 0 0	3 6 5 0			
				F			CC	2500			3 8 5 0			
Removed 2 pass. from C-17 and C-18				G										
				H										
				I										
				J										
				K										
				L										
				M										
COMPUTER PLATE NUMBER (If used)				N										
				O										
				P										
				FWD BELLY										
				APT BELLY										
CORRECTIONS (Ref. 14)				13	TAKEOFF CONDITION (Uncorrected)			1 3 9 0 5 8 1 9 8 8 1 1						
				14	CORRECTIONS (If required)			4 0 0 0		6 9 5 0				
				15	TAKEOFF CONDITION (Corrected)			1 3 5 0 5 8 1 9 1 8 6 1						
				16	TAKEOFF C. G. IN % M. A. C. OR IN.			142						
				17	LESS FUEL			1 3 3 8 0		2 4 3 2 0				
				18	LESS AIR SUPPLY LOAD DROPPED									
				19	MISC. VARIABLES									
				20	ESTIMATED LANDING CONDITION			1 2 1 6 7 8 1 6 7 5 4 1						
				21	ESTIMATED LANDING C. G. IN % M. A. C. OR IN.			138						
COMPUTED BY				Your signature										
				SIGNATURE										
WEIGHT AND BALANCE AUTHORITY														
				SIGNATURE										
PILOT														
				SIGNATURE										
NET DIFFERENCE (Ref. 14)														

DD FORM 1 SEPT 54 365F

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1976-4

PROBLEM SHEET - PERIOD FOUR

WEIGHT AND BALANCE

Date: Current.

Type: CH-34C.

From: Hanchey AAF.

Home Station: Hanchey AAF.

To: Atlanta, Georgia.

Mission: Service.

Aircraft Serial Number: 57-1770.

Pilot: You.

Basic Weight: 8,149.

Basic Moment: 11,166.1.

Oil: 10.5 gallons.

Crew: Pilot and copilot, 200 pounds each.

Takeoff Fuel: 263 gallons.

ETE: 2+00.

Fuel Used: Aft tank 92.3 gallons.
Center tank 70.7 gallons.
Forward tank 40.0 gallons.

Cargo and Passenger Compartment: C-18, 2 passengers 200 pounds each.
C-19, 2 passengers 200 pounds each.
C-20, 2 passengers 200 pounds each.
C-21, 2 passengers 200 pounds each.

NOTES

1. 1000-10000

2. 1000-10000

3. 1000-10000

4. 1000-10000

5. 1000-10000

6. 1000-10000

7. 1000-10000

8. 1000-10000

9. 1000-10000

10. 1000-10000

11. 1000-10000

12. 1000-10000

13. 1000-10000

14. 1000-10000

15. 1000-10000

16. 1000-10000

17. 1000-10000

18. 1000-10000

19. 1000-10000

20. 1000-10000

21. 1000-10000

22. 1000-10000

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1976-4

SOLUTION SHEET - PERIOD FOUR

WEIGHT AND BALANCE

NOTE: See solution sheet on following page.

WEIGHT AND BALANCE CLEARANCE FORM F TRANSPORT (USE REVERSE FOR TACTICAL MISSIONS)							CROSS REFERENCES RAF Form 2670 BOAF Form F. 118 C ADM 5-61 (REV)			FOR USE IN T.O. 1-1B-40 AN 01-1B-40 & TM 55-405-9		
DATE Current	AIRCRAFT TYPE CH-34C			FROM Hanchey AAF			HOME STATION Hanchey AAF					
MISSION/TRIP/FLIGHT/NO. Service	SERIAL NO. 57-1770			TO Atlanta, Ga.			PILOT You					
LIMITATIONS				REF.	ITEM		WEIGHT		INDEX OR MOM/			
CONDITION	TAKEOFF	LANDING	LIMITING WING FUEL		1	BASIC AIRCRAFT (From Chart C)		8 1 4 9 0	1 1 1 6 6 1			
1 ALLOWABLE GROSS WEIGHT	13600	13600		2	OIL (10.5 Gal.)		7 8 8	5 0 0				
TOTAL AIRCRAFT WEIGHT (Ref. 1)	10205			3	CREW (No.) 2		4 0 0 0	3 7 0 0				
OPERATING WEIGHT PLUS ESTIMATED LANDING FUEL WEIGHT		8987		4	CREW'S BAGGAGE							
OPERATING WEIGHT (Ref. 8)				5	STEWARD'S EQUIPMENT							
ALLOWABLE LOAD (Ref. 18) (SEE SMALLEST figure)	3395	4612		6	EMERGENCY EQUIPMENT							
PERMISSIBLE C. G. TAKEOFF	FROM 132	TO (% M.A.C. or IN.) 146		7	EXTRA EQUIPMENT							
PERMISSIBLE C. G. LANDING	FROM 132	TO (% M.A.C. or IN.) 146		8	OPERATING WEIGHT		8 6 2 7 8	1 1 5 8 6 1				
LANDING FUEL WEIGHT				9	TAKEOFF FUEL (263 Gal.)		1 5 7 8 0	2 7 1 0 0				
				10	WATER INJ. FLUID (Gal.)							
				11	TOTAL AIRCRAFT WEIGHT		1 0 2 0 5 8	1 4 2 9 6 1				
REMARKS				12 DISTRIBUTION OF ALLOWABLE LOAD (PAYLOAD)								
				UPPER COMPARTMENTS		COMPT	LOWER COMPARTMENTS					
				PASSENGERS	CARGO		PASSENGERS	CARGO				
				NO.	WEIGHT	NO.	WEIGHT					
				A		C18	2 400		4 0 0 0	7 3 1 0		
				B		C19	2 400		4 0 0 0	8 0 1 0		
				C		C20	2 400		4 0 0 0	8 7 1 0		
				D		C21	2 400		4 0 0 0	9 4 1 0		
				E								
				F								
				G								
				H								
				I								
				J								
				K								
TOTAL FREIGHT				L								
TOTAL MAIL				M								
COMPUTER PLATE NUMBER (If used)				N								
				O								
				P								
				FWD BELLY								
				APT BELLY								
1 Enter constant used. 2 Enter values from current applicable T.O./TM 3 Applicable to gross weight (Ref. 15). 4 Applicable to gross weight (Ref. 18). 5 Ref. 9 minus Ref. 17.												
CORRECTIONS (Ref. 14)				13 TAKEOFF CONDITION (Uncorrected)						1 1 8 0 5 8 1 7 6 4 0 1		
				14 CORRECTIONS (If required)						3 5 0 0		
COMPT	ITEM	CHANGES (+ or -)		15 TAKEOFF CONDITION (Corrected)						1 1 8 0 5 8 1 7 2 9 0 1		
		WEIGHT	INDEX OR MOM/	16 TAKEOFF C. G. IN % M. A. C. OR IN.						146.7		
C21	2 troops	400	941	17 LESS FUEL						1 2 1 8 0 2 2 9 0 1		
C16	2 troops	400	591	18 LESS AIR SUPPLY LOAD DROPPED								
				19 MISC. VARIABLES								
				20 ESTIMATED LANDING CONDITION						1 0 5 8 7 8 1 4 9 9 7 1		
				21 ESTIMATED LANDING C. G. IN % M. A. C. OR IN.						141.5		
COMPUTED BY Your signature SIGNATURE												
WEIGHT AND BALANCE AUTHORITY SIGNATURE												
PILOT SIGNATURE												
NET DIFFERENCE (Ref. 14) - 0 - 350 SIGNATURE												

NOTE.—THIS TRANSPORT CLEARANCE FORM HAS BEEN DRAFTED FROM TRIPARTITE AGREEMENT, WITHOUT CONSIDERATION BY TRIPARTITE AUTHORITIES.

DD FORM 1 SEPT 54 365F

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1975-2

PERFORMANCE OBJECTIVES

UTILITY SYSTEMS

1. KNOWLEDGES:

a. Fire detector system.

- (1) Complete a statement on the fire detector system.
- (2) Worksheet and TM 55-1520-202-20.
- (3) In accordance with TM 55-1520-202-20.

b. Heater, defrosting and ventilation systems.

- (1) From a list of components of the heat, defrosting, and ventilation systems, match them with a list of their description, location, function, purpose, and operation.
- (2) Worksheet and TM 55-1520-202-20.
- (3) In accordance with TM 55-1520-202-20.

c. Pitot heater.

- (1) Complete the statement concerning the pitot heater.
- (2) Worksheet and TM's 55-1520-202-10 and -20.
- (3) In accordance with TM's 55-1520-202-10 and -20.

d. Windshield wiper.

- (1) Complete the statements on the description, location, and function of the windshield wiper.
- (2) Worksheet and TM 55-1520-202-20.
- (3) In accordance with TM 55-1520-202-20.

e. Rescue hoist.

- (1) Match the components in column A with those in column B which lists their description, location, and operation.

- (2) Worksheet and TM 55-1520-202-20.
- (3) In accordance with TM 55-1520-202-20.
- f. Cargo sling.
 - (1) When given a list of sentences, fill in the blank spaces concerning cargo sling.
 - (2) Worksheet and TM 55-1520-202-20.
 - (3) In accordance with TM 55-1520-202-20.
- g. Troop and casualty capabilities.
 - (1) Fill in the correct numbers of seats and litters the CH-34C can accommodate.
 - (2) Worksheet and TM's 55-1520-202-20 and -10.
 - (3) In accordance with TM's 55-1520-202-10 and -20.

150
288
350 ° switch switch off of
stop rear door.
recycle cabin switch to
start the latrino.
cabin seat with inside the door.

blower rear of conductor duct turns 13000 RPM
284 DC

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1975-2

30 sec warm up. 277°C light comes on.

STUDENT OUTLINE

UTILITY SYSTEMS

1. Fire detector system. Detect & indicate excessive heat in engine compartment.
 - a. continuous re-setting
 - b. sensing elements 3 elements one in front of oil cooler & one
 - c. control unit in electronics load engine cover door. Compartment on right side.
115 volts phases A + C from inverter
2. Heat and ventilation system.
 - a. Description and location. internal combustion 50,000 BTU uses 115/145 FUEL hot air electrical blow. High & low range

TEST QUESTION

b. Components.

cabin heat switch
duct system of 10 rods of fiberglass 8 openings for heat exchanger
heat exchanger fuel outlet of valve located forward of forward fuel cell
fuel filter left side of electronics comp. Throwaway filter
electrical pump above the filter produces 25 PSI for pressure relief valve opens at 12 PSI.
alt fuel shutoff valve located above relief valve electrical operated.
ignition unit on left side of center. coil assembly + 2 radio noise shields.
spark plug in the center.
air pressure switch plenum duct

3. Pitot heater. DC piping for
prevent ice formation on head & pitot tube
only in flight necessary

4. Windshield wiper. 120° over 20 seconds
counter with flexible cable
5 positions

5. Rescue hoist. hydraulically operated electrically controlled
a. 600 LB mot.
b. hoist pump. left side of main gear for ^{visor} _{7' pitch, 1250 PSI} contact diaphragm
filter: relief valve set at 1250 PSI
4 way solenoid valve. control electrically
hoist motor located the hoist
100' 3/8 cable. hoist mid ^{hoist has 3 positions switch}
up & down limit switches. right switch ^{on, off}
Cargo sling. cyclic
a. 4 cable suspended for support plates.
b. cargo hook. directly below main rotor nose.
4,000 or ^{not} _{also under certain} 5,000
electrical release DC for spring bias
good mechanical cockpit floor non-release.

cargo bay ports with a warning light.
position in flight on, engine with to above.
warning light indicates hatch is open.

7. Troop and casualty carrying equipment.

18 Troops in seats.
8 litters
4 high 4 in left seat
4 in right seat.

NOTES

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1975-2

PERFORMANCE CHECK

UTILITY SYSTEMS

1. KNOWLEDGES:

a. Complete the following statement on the fire detector system:

The fire detector warning light comes on when the temperature reaches
277°.

b. Match the components of the heat, defroster, and ventilation system in list A with their correct description and operation in list B.

LIST A

1 Cabin heater switch.
2 Ducts.
(3) Aft and forward fuel valves.
3 Fuel pump.
(5) Fuel filter.
(6) Pressure relief valve.
(7) Ignition unit.
(8) Combustion unit.
9 Air pressure switch.
(10) Plenum duct and thermal switches.

LIST B

1 Located on heater fuel panel; explosion proof, electric; produces 25 psi pressure.
— Controls flow of fuel; turned on and off by two methods; each electrically operated.
9 Safety device; keeps aft shutoff valve closed till sufficient air has entered combustion chamber.

LIST B (continued)

- Provides pulsating current to spark plug; has a coil and a vibrator.
- Has a double chamber, one for heating and one for combustion; has 12,000 rpm blower, 28-volt D. C. current operates this item; provides air for heating and cooling.
- This is where the heated air divides into two different tubes to enter cabin; four heater switches, two safety and two for the temperature range.
- 5 Removes any particles of trash that might be in the fuel line or fuel tanks, paper throwaway type; located on heater fuel panel.
- 2 Is a means of distributing air to the cabin and pilot's compartment and to the defrosters; has eight anemostats, can also hook a preheat hose to it; made out of fiberglass.
- 1 Three-position - low, off, high; two-position - off, fan on; located on overhead switch panel.
- Located on heater fuel panel; opens at 12 psi; sends fuel to aft shutoff valve and back to fuel filter.

c. Complete the following statement:

The purpose of the pitot heater is to soften ice in head of tube and is to be used in flight.

d. Complete the statement on the windshield wiper.

- (1) The motor changes the rotating motion to linear motion.
- (2) The windshield wiper operates off 28 volt D. C. current.
- (3) Never operate wiper on dry glass.

e. Match item description, location, and function in list B with the correct component in list A.

LIST A

- (1) Hoist pump.
- (2) Filter.
- (3) Relief valve.
- (4) Four-way solenoid valve.
- (5) Hoist motor.

LIST A (continued)

- (6) Winch assembly.
- (7) Hoist master switch.
- (8) Emergency hoist cable cutoff switches.
- (9) Hoist shear circuit test panel.

LIST B

- Located above cabin door; test operation of guillotine circuit; has to be in FIRE position prior to flight.
- This allows either pilot or crew chief to cut cable in an emergency; pilot's located on overhead switch panel, crew's located above cabin door.
- Located on main overhead control panel, three-position (pilot, crew, and off).
- Located right side of helicopter outside cabin door, holds 100 feet of cable, has a level wind mechanism, two limit switches.
- Located in hoist housing, operated by pressurized hydraulic fluid, drives winch assembly, direction controlled by the four-way valve.
- Located on hoist hydraulic panel, controls direction of rotation of winch, can be controlled by either pilot and/or crew chief, also allows fluid to bypass back to reservoir when not energized.
- Located on hydraulic hoist panel; set to open at 1250 psi; controls amount that hoist will lift.
- Has a micronic element, separates impurities, has a 50 psi differential bypass valve.
- Located left side of main gearbox accessory section, uses hydraulic oil from primary hydraulic reservoir, seven-piston, constant-displacement.

f. Complete the following statements:

- (1) The CH-34C has a sling load capacity of 4,000 pounds or 5000 pounds.
- (2) The sling load can be released helically or radial.

g. Fill in the blank spaces.

The CH-34C can carry 2 litters or 18 passengers.

NOTES

Information by Paul

- 1. The following are the names of the persons who are in the
group: (1) *John Doe* (2) *John Doe* (3) *John Doe*
- 2. The following are the names of the persons who are not in the
group: (1) *John Doe* (2) *John Doe* (3) *John Doe*
- 3. The following are the names of the persons who are not in the
group: (1) *John Doe* (2) *John Doe* (3) *John Doe*
- 4. The following are the names of the persons who are not in the
group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

Information concerning the names of the persons who are not in the group: (1) *John Doe* (2) *John Doe* (3) *John Doe*

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1972-3

PERFORMANCE OBJECTIVES

HYDRAULIC SYSTEMS

1. KNOWLEDGES: Hydraulic systems and components.
 - a. Match statements on description, location, and operation of the hydraulic systems or components to systems or components to which they apply.
 - b. Worksheet and TM's 55-1520-202-10 and -20.
 - c. In accordance with TM 55-1520-202-20.
2. SKILLS: None.

NOTES

COLLATERAL NOTES TO INVESTIGATIONS
SPECIAL AGENT IN CHARGE, U.S. DEPARTMENT OF JUSTICE
FEDERAL BUREAU OF INVESTIGATION

COLLATERAL INFORMATION

COLLATERAL NOTES

1. The following notes are made in connection with the investigation of the above-named individual. They are not to be construed as recommendations, conclusions or findings of the Bureau. They are to be used only as a means of keeping the Bureau advised of the progress of the investigation and of the results of the investigation.

2. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

3. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

4. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

5. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

6. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

7. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

8. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

9. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

10. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

11. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

12. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

13. The notes are to be signed by the Agent in Charge, or by the Special Agent in Charge, or by the Director, or by the Director's designee.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1972-3

STUDENT OUTLINE

HYDRAULIC SYSTEMS

1. Principles of hydraulics. pressure exerted by a fluid, mechanical advantage equal to cylinder displacement.
2. Description of primary and auxiliary servo hydraulic systems. pressurized at 3500 PSI MIL-H-5606 primary & auxiliary are independent of each other, only one system may be turned off at one time, each system made up of some components.
3. Primary servosystem.
 - a. General location. left side of trans. deck.
 - b. Purpose. provide power assist to main rotor control only. surge filter .45 mic.
 - c. Components.

System operates 1500 PSI

(1) Reservoir. 45 U.S. gal. 3 filters

(2) Hydraulic pump. located lower left to generate primary and aux pump intercoupling positive displacement variable delivery, constant pressure piston pump factory set at 1500 PSI

(3) Line filter. on main system

2 bypass valves set at 50 PSI drop.

(4) Pressure relief valve. located on left of trans. regulator system pressure if pump regulator allows system to reach 1750 PSI

(5) Three-way solenoid valve.

left of trans. provides a way to turn off pump system if over pressure reaches 1000 PSI or more.

(6) Pressure switch.

left of trans. controls position of 3-way solenoid switch hydraulic pressure overcomes spring tension at 1000 PSI.

all switchings look like electrical operated.

(7) Snubber and restrictor.

prevent sudden surges of fluid.

(8) Pressure transmitter.

(9) Pressure indicator.

transducer to instant pressure
to electrical indication.

(10) Primary servo unit.

introduces hydraulic fluid to main stroke
control.

pilot valve route hydraulic fluid that runs
during normal operation. 2000 ft on "displacement
and control bypass.

4. Auxiliary servosystem.

a. General location.

accessory section of engine. engine mounted
right side on access syst.

b. Purpose.

pulldown device.

c. Components.

(1) Reservoir.

right of trans. see or pms.

(2) Hydraulic pump.

engin driver. see or pms.

(3) Line filter.

in clutch capt zone and the
also 50 psig by flow valve

(4) Pressure relief valve.

right of trans.
see or pms.

(5) Three-way solenoid valve.

right of trans.
provide a ready turning off aux whip pump
pressure above 1,000 psig

(6) Pressure switch.

see right of trans.

(7) Snubber and restrictor.

see R trans.

(8) Pressure transmitter.

right front trans deck.

(9) Pressure indicator.

(10) Actuating cylinder.

operate the torque shift
of aux aux with; not less 1,000 psig
to operate. ¹⁴⁶ is spring extended with under 1,000 psig
exists a need collective.

(11) Auxiliary servo unit.

where the rudder action takes place.

(12) Tail rotor servo.

lift over & lift over & trans. deck.
elieve control forces in main tail rotor
controles.
roducer by force amount to tail - the control

(13) Pedal damper.

puts a little faliq in the
pedal.
prevents rapid movement of tail rotor
peddles.

(14) Hydraulic fuse.

clips cost a tip,
prevents a complete loss of fluid if
leak develops in any system between peddles
downs and ~~reservoir~~.

5. Common malfunctions and their remedial actions.

DEPARTMENT OF MAINTENANCE TRAINING
UNITED STATES ARMY AVIATION SCHOOL
Fort Rucker, Alabama

File No. 1972-3

PERFORMANCE CHECK

HYDRAULIC SYSTEMS

1. Match the numbered items to the statement to which they apply by placing number in blank by each statement. One statement may apply to more than one numbered item.

a. General information on hydraulic systems.

(1) Primary hydraulic system.
(2) Auxiliary hydraulic system.

2 Contains tail rotor servo and pedal damper.

1 Gives power assist to main rotor controls only.

1 Is located principally on left transmission deck.

1&2 Has right lateral, left lateral, and fore-and-aft servos.

1&2 Is pressurized system.

2 Has lateral, fore-and-aft, and collective servos.

2 Should not be turned off in flight except in emergencies.

2 Is pressurized by pump on engine accessory section.

b. Primary servo hydraulic system.

(1) Reservoir.
(2) Pump.
(3) Line filter.
(4) Pressure relief valve.
(5) Three-way solenoid valve.

3 Has bypass valve which operates at 50 psi differential pressure.

— Controls flow of fluid through servo.

2 Is described as constant-pressure, variable-delivery.

(6) Pressure switch 1 Has capacity of 0.45 US gallons.

(7) Snubber and restrictor. 4 Operates at 1750 psi.

(8) Pressure transmitter. 5 Converts hydraulic pressure to an electrical impulse.

(9) Pressure indicator. — Contains bypass valve which opens when pressure drops below 500 psi.

(10) Servo.

- (a) Pilot valve. 3 Provides means of turning off system.
- (b) Piston. 9 Located on instrument panel and indicates pressure in system.
- (c) Cylinder. 10 Connected to stationary star and actually does the moving when pilot valve is displaced.

7 Smooths out pressure surges.

10A Requires .002-inch displacement for proper operation.

1 Is checked for fluid level daily.

— Connected at bottom to lug on main transmission and remain stationary when servo is in operation.

— Closes when pressure reaches 1000 psi.

— Operates only when pump regulator malfunctions.

— Catches feedback from main rotor.

— May be operated only when there is more than 1000 psi in auxiliary system.

c. Auxiliary servo hydraulic system.

- (1) Three-way solenoid valve. — Prevents loss of fluid should a leak develop in the pedal damper or lines leading to it.
- (2) Pressure switch. — Is merely a link of flight controls when pressure is below 1000 psi.

- (3) Pedal damper.
 - Will operate only when there is more than 1000 psi in primary system.
- (4) Hydraulic fuse.
 - Retracts when there is more than 1000 psi in system.
- (5) Actuating cylinder.
 - Is located between the pilot's and copilot's seats under cowling.
- (6) Tail rotor servo.
 - Limits tail rotor control pedal full travel movement to 18 plus or minus 3 seconds with 50 pounds force applied.
- (7) Auxiliary servo assembly.
 - Absorbs feedback from tail rotor and assists pilot in moving control pedals.
 - Completes circuit from servo switch to primary three-way solenoid valve when pressure rises to 1000 psi.
 - Remains stationary when servo is in operation.
 - Is located above and to the left of pilot's left foot.
 - Prevents the pilot valve from being displaced when servo is in bypass position.
 - Allows 12cc flow before closing.
 - Is displaced by movement of controls when pressure is above 1000 psi.
 - Controls the position of the bypass valves, cams, and rollers.
 - Requires 500 psi to close bypass valve.
 - Controls flow of fluid through servo.
 - Does the moving as opposed to the cylinder in the primary system.

NOTES