

**Table 4-18**  
**Post-SEA Birth Weight**

Variable: Birth Weight (Grams)  
 Restrictions: Full Siblings of Ranch Hands and Comparisons  
 Children Conceived during or after the  
 Father's Duty in SEA  
 Model 3: Categorized Current Dioxin

**a) Unadjusted**

| Exposure Category | n    | Mean                    | Category Contrast | Difference of Means (95% C.I.) | p-Value |
|-------------------|------|-------------------------|-------------------|--------------------------------|---------|
| Background        | 803  | 3407.1                  | All Exp Categ     |                                | 0.032   |
| Unknown           | 216  | 3293.2                  | Unk vs Bkgd       | -113.9(-200.3,-27.5)           | 0.008   |
| Low               | 147  | 3427.0                  | Low vs Bkgd       | 19.9(-81.2,121.0)              | 0.680   |
| High              | 194  | 3335.9                  | High vs Bkgd      | -71.2(-161.4,19.0)             | 0.113   |
| Total             | 1360 | (R <sup>2</sup> =0.006) |                   |                                |         |

**b) Adjusted**

| Exposure Category | n    | Adj. Mean               | Category Contrast | Diff. of Adj. Means (95% C.I.) | p-Value | Covariate Remarks                         |
|-------------------|------|-------------------------|-------------------|--------------------------------|---------|-------------------------------------------|
| Background        | 713  | 3256.8                  | All Exp Categ     |                                | 0.001   | RACE(p=0.048)                             |
| Unknown           | 197  | 3194.2                  | Unk vs Bkgd       | -62.6(-149.5,24.3)             | 0.166   | OCC(p=0.001)                              |
| Low               | 137  | 3285.9                  | Low vs Bkgd       | 29.1(-71.6,129.8)              | 0.575   | SMOKE(p=0.001)                            |
| High              | 180  | 3104.0                  | High vs Bkgd      | -152.8(-242.9,-62.7)           | 0.002   | DRINK(p=0.046)<br>OCC*DIOXIN<br>(p=0.065) |
| Total             | 1227 | (R <sup>2</sup> =0.073) |                   |                                |         |                                           |

**Low Birth Weight (All Children)**

Model 1: Conceptions of Ranch Hands - Log<sub>2</sub>(Initial Dioxin)

Without adjustment for covariates (Table 4-19 [a] and [b]), there is no association between abnormally low birth weight and initial dioxin among children of Ranch Hands having more than 10 ppt (p=0.759) or more than 5 ppt (p=0.625) current dioxin.

After adjustment for covariates (Table 4-19 [c]), there is no significant association between abnormally low birth weight and initial dioxin among children of Ranch Hands with more than 10 ppt (p=0.250).

After adjustment for covariates (Table 4-19 [d]), there is significant variation in the association between the abnormally low birth weight and initial dioxin with the mother's drinking (p=0.014) and the father's race (p=0.040) among children of Ranch Hands with more than 5 ppt. The basis for this association in risk is displayed in Appendix B-1. There is a significant association between low birth weight and initial dioxin in children of non-black fathers whose mothers drank during pregnancy (p=0.017). A borderline significant association was observed in children of Black fathers whose mothers did not drink during pregnancy (p=0.084).

If this variation is ignored (Table 4-19 [d]), there is no significant association between abnormally low birth weight and initial dioxin among children of Ranch Hands having more than 5 ppt current dioxin (p=0.883).

Table 4-19

Post-SEA Low Birth Weight

Variable: Low Birth Weight  
Restrictions: All Children of Ranch Hands  
Children Conceived during or after the  
Father's Duty in SEA  
Model 1:  $\text{Log}_2(\text{Initial Dioxin})$

---

Ranch Hands -  $\text{Log}_2(\text{Initial Dioxin})$  - Unadjusted

| Exposure<br>Restriction | Initial<br>Dioxin | n   | Abnormal<br>Number | Est. Relative<br>Risk (95% C.I.) | p-Value               |
|-------------------------|-------------------|-----|--------------------|----------------------------------|-----------------------|
| a) D>10 ppt<br>(n=496)  | Low               | 106 | 7                  | 66.0                             | 1.05(0.79,1.38) 0.759 |
|                         | Medium            | 237 | 17                 | 71.7                             |                       |
|                         | High              | 153 | 13                 | 85.0                             |                       |
| b) D>5 ppt<br>(n=670)   | Low               | 151 | 14                 | 92.7                             | 0.95(0.78,1.16) 0.625 |
|                         | Medium            | 299 | 23                 | 76.9                             |                       |
|                         | High              | 220 | 18                 | 81.8                             |                       |

Table 4-19 (Continued)

Ranch Hands -  $\log_2$ (Initial Dioxin) - Adjusted

| Exposure Restriction | Adj. Relative Risk (95% C.I.) | p-Value  | Covariate Remarks                                                               |
|----------------------|-------------------------------|----------|---------------------------------------------------------------------------------|
| c) D>10 ppt (n=456)  | 1.21(0.87,1.68)               | 0.250    | RACE(p=0.042)<br>SMOKE(p=0.045)<br>OCC(p=0.001)<br>SMOKE*DIOXIN(p=0.066)        |
| d) D>5 ppt (n=612)   | 0.98(0.77,1.25)***            | 0.883*** | SMOKE(p=0.036)<br>OCC(P=0.017)<br>RACE*DIOXIN(p=0.040)<br>DRINK*DIOXIN(p=0.014) |

## Low Birth Weight (All Children)

Model 2: Conceptions of Ranch Hands -  $\log_2$ (Current Dioxin) and Time

Without adjustment for covariates (Table 4-20 [a] and [b]), there is no significant variation in the association between abnormally low birth weight and current dioxin with time since duty in SEA among children of Ranch Hands having more than 10 ppt (p=0.868) or more than 5 ppt current dioxin (p=0.977). Furthermore, there is no significant association between abnormally low birth weight and current dioxin among Ranch Hands with late or early tours for either exposure restriction.

After adjustment for covariates (Table 4-20 [c]), there is no significant variation in the association between abnormally low birth weight and current dioxin with time since duty in SEA among children of Ranch Hands having more than 10 ppt current dioxin (p=0.918). Furthermore, there is no association between low birth weight and current dioxin among children of Ranch Hands with late (p=0.378) or early (p=0.715) tours.

After adjustment for covariates (Table 4-20 [d]), there is significant variation in the association between abnormally low birth weight and current dioxin with time since duty in SEA and conception time since end of tour among children of Ranch Hands having more than 5 ppt current dioxin (p=0.031). The basis for this variation is displayed in Appendix B-1. There is a borderline significant decrease in abnormally low birth weight with current dioxin in children of fathers with early tours for conceptions within 2 years of duty in SEA (p=0.060) and a significant increase in low birth rate with current dioxin in conceptions more than 6.5 years after SEA (p=0.030) fathered by Ranch Hands with early tours. The other four strata did not show a significant association between abnormally low birth weight and current dioxin.

If this variation is ignored (Table 4-20 [d]), there is no significant variation in the association between the low birth weight and current dioxin with time since duty in SEA among children of Ranch Hands having more than 5 ppt current dioxin ( $p=0.550$ ). Furthermore, there is no significant association between the low birth weight and current dioxin among children of Ranch Hands with late ( $p=0.527$ ) or early ( $p=0.894$ ) tours.

Table 4-20

**Post SEA Low Birth Weight**

Variable: Low Birth Weight (Discrete)  
 Restrictions: All Children of Ranch Hands  
 Children Conceived during or after the  
 Father's Duty in SEA  
 Model 2:  $\text{Log}_2(\text{Current Dioxin})$ , Time

**Ranch Hands -  $\text{Log}_2(\text{Current Dioxin})$ , Time - Unadjusted**

| Exposure<br>Restriction | Time Since<br>SEA (years) | Abnormal (No./n) |                  |                   | Est. Relative<br>Risk (95% C.I.) | p-Value |
|-------------------------|---------------------------|------------------|------------------|-------------------|----------------------------------|---------|
|                         |                           | Low              | Medium           | High              |                                  |         |
| a) D>10 ppt<br>(n=497)  | $\leq 18.6$               | 32.3<br>(2/62)   | 91.6<br>(12/131) | 70.4<br>(5/71)    | 1.01(0.65,1.58)                  | 0.868   |
|                         | $>18.6$                   | 100.0<br>(4/40)  | 76.9<br>(8/104)  | 67.4<br>(6/89)    | 1.06(0.72,1.56)                  | 0.756   |
| b) D>5 ppt<br>(n=670)   | $\leq 18.6$               | 80.5<br>(7/87)   | 81.9<br>(14/171) | 73.4<br>(8/109)   | 0.93(0.69,1.25)                  | 0.977   |
|                         | $>18.6$                   | 133.3<br>(8/60)  | 45.5<br>(6/132)  | 108.1<br>(12/111) | 0.92(0.70,1.22)                  | 0.623   |
|                         |                           |                  |                  |                   |                                  | 0.568   |

Table 4-20 (Continued)

Ranch Hands -  $\log_2$ (Current Dioxin), Time - Adjusted

| Exposure Restriction   | Time Since SEA (years) | Adj. Relative Risk (95% C.I.) | p-Value  | Covariate Remarks                               |
|------------------------|------------------------|-------------------------------|----------|-------------------------------------------------|
| c) D>10 ppt<br>(n=457) | ≤18.6                  | 1.26(0.75, 2.12)              | 0.378    | RACE(p=0.039)<br>OCC(P=0.001)<br>SMOKE(P=0.043) |
|                        | >18.6                  | 1.22(0.42, 3.55)              | 0.715    |                                                 |
| d) D>5 ppt<br>(n=612)  |                        |                               | 0.550*** | SMOKE(p=0.018)                                  |
|                        | ≤18.6                  | 0.89(0.62, 1.27)***           | 0.527*** | OCC(p=0.022)<br>C-TIME*DIOXIN<br>(p=0.031)      |
|                        | >18.6                  | 1.02(0.75, 1.39)***           | 0.894*** |                                                 |

## Low Birth Weight (All Children)

## Model 3: Children of Ranch Hands and Comparisons - Categorized Current Dioxin

Without adjustment for covariates (Table 4-21 [a]), there is a significant overall association between abnormally low birth weight and categorized current dioxin (p=0.002). Furthermore, the rates of low birth weight among children of Ranch Hands in the High (p=0.003) and Unknown (p=0.001) categories are significantly higher than the rate among children of Comparisons in the Background category. The rate of abnormally low birth weight among children of Ranch Hands in the Low category is not significantly different from the rate among children of Comparisons in the Background category (p=0.189).

After adjustment for the covariates (Table 4-21 [b]), there is significant variation in the overall association between abnormally low birth weight and categorized current dioxin with the father's military occupation (p=0.004). The basis for this variation is displayed in Appendix B-1. For the enlisted flyers, the rates of abnormally low birth weight among children of Ranch Hands in the High (p=0.003) and Unknown (p=0.003) categories are significantly higher than the rate among children of Comparisons in the Background category. For the enlisted ground personnel, the rates of abnormally low birth weight among children of Ranch Hands in the High (p=0.007) and Unknown (p=0.003) categories are also significantly higher than the rate among children of Comparisons in the Background category.

For the officers, significance testing could be done only between the Unknown and the Background categories because of the small number of children in the other categories. No significant difference exists between the rate of abnormally low birth weight in children of Ranch Hands in the Unknown category and the rate in children of Comparisons in the Background category ( $p=0.215$ ).

Table 4-21

Post SEA Low Birth Weight

Variable: Low Birth Weight (Discrete)  
 Restrictions: All Children of Ranch Hands and Comparisons  
 Children Conceived during or after the  
 Father's Duty in SEA  
 Model 3: Categorized Current Dioxin

a) Unadjusted

| Exposure Category | n   | Abnormal Number | Category Rate | Category Contrast | Est. Relative Risk (95% C.I.) | p-Value |
|-------------------|-----|-----------------|---------------|-------------------|-------------------------------|---------|
| Background        | 954 | 40              | 41.9          | All Exp Categ     |                               | 0.002   |
| Unknown           | 268 | 25              | 93.3          | Unk vs Bkgd       | 2.35(1.40,3.91)               | 0.001   |
| Low               | 170 | 11              | 64.7          | Low vs Bkgd       | 1.58(0.79,3.14)               | 0.189   |
| High              | 220 | 20              | 90.9          | High vs Bkgd      | 2.28(1.31,4.00)               | 0.003   |
| Total             |     | 1612            |               |                   |                               |         |

b) Adjusted

| Exposure Category | n   | Category Contrast | Adj. Relative Risk (95% C.I.) | p-Value | Covariate Remarks  |
|-------------------|-----|-------------------|-------------------------------|---------|--------------------|
| Background        | 837 | All Exp Categ     | ****                          | ****    | SMOKE( $p=0.001$ ) |
| Unknown           | 244 | Unk vs Bkgd       |                               |         | OCC*DIOXIN         |
| Low               | 156 | Low vs Bkgd       |                               |         | ( $p=0.004$ )      |
| High              | 201 | High vs Bkgd      |                               |         |                    |
| Total             |     | 1438              |                               |         |                    |

## Low Birth Weight (Full Siblings)

### Model 1: Conceptions of Ranch Hands - $\log_2$ (Initial Dioxin)

Without adjustment for covariates (Table 4-22 [a] and [b]), there is no association between abnormally low birth weight and initial dioxin among full siblings fathered by Ranch Hands having more than 10 ppt ( $p=0.743$ ) or more than 5 ppt ( $p=0.629$ ) current dioxin.

After adjustment for covariates (Table 4-22 [c]), there is significant variation in the association between the abnormally low birth weight and initial dioxin with conception time since the end of the SEA tour ( $p=0.038$ ) and the mother's smoking ( $p=0.009$ ) among children of Ranch Hands with more than 10 ppt. The basis for this interaction is displayed in Appendix B-1. In children of mothers who did not smoke during pregnancy and whose conceptions occurred within 2 years after the father's SEA tour there is a borderline significant decrease in the rate of abnormally low birth weight with initial dioxin ( $p=0.082$ ). None of the remaining five combinations of conception time since SEA and mother's smoking show any significant association between abnormally low birth weight and initial dioxin.

After adjustment for covariates (Table 4-22 [d]), there is significant variation in the association between the abnormally low birth weight and initial dioxin with the mother's smoking ( $p=0.032$ ) and conception time since the SEA tour ( $p=0.021$ ) among children of Ranch Hands with more than 5 ppt. The basis for this interaction is displayed in Appendix B-1. In children of mothers who did not smoke during pregnancy and whose conceptions occurred within 2 years after the father's SEA tour there is a significant decrease in the rate of abnormally low birth weight with initial dioxin ( $p=0.006$ ). None of the remaining five combinations of conception time since SEA duty and the mother's smoking show any significant association between abnormally low birth weight and initial dioxin.

If this interaction is ignored (Table 4-22 [d]), there is no significant association between abnormally low birth weight and initial dioxin among children of Ranch Hands having more than 5 ppt current dioxin ( $p=0.984$ ).

Table 4-22

## Post SEA Low Birth Weight

Variable: Low Birth Weight (Discrete)  
 Restrictions: Full Siblings of Ranch Hands  
 Children Conceived during or after the  
 Father's Duty in SEA  
 Model 1:  $\log_2(\text{Initial Dioxin})$

Ranch Hands -  $\log_2(\text{Initial Dioxin})$  - Unadjusted

| Exposure<br>Restriction | Initial<br>Dioxin | n   | Abnormal<br>Number | Rate | Est. Relative<br>Risk (95% C.I.) | p-Value |
|-------------------------|-------------------|-----|--------------------|------|----------------------------------|---------|
| a) D>10 ppt<br>(n=418)  | Low               | 78  | 5                  | 64.1 | 1.05(0.78,1.42)                  | 0.743   |
|                         | Medium            | 205 | 16                 | 78.0 |                                  |         |
|                         | High              | 135 | 12                 | 88.9 |                                  |         |
| b) D>5 ppt<br>(n=552)   | Low               | 113 | 11                 | 97.3 | 0.95(0.77,1.17)                  | 0.629   |
|                         | Medium            | 242 | 20                 | 82.6 |                                  |         |
|                         | High              | 197 | 17                 | 86.3 |                                  |         |

Ranch Hands -  $\log_2(\text{Initial Dioxin})$  - Adjusted

| Exposure<br>Restriction | Adj. Relative<br>Risk (95% C.I.) | p-Value  | Covariate<br>Remarks                                                                 |
|-------------------------|----------------------------------|----------|--------------------------------------------------------------------------------------|
| c) D>10 ppt<br>(n=390)  | ****                             | ****     | RACE(p=0.028)<br>OCC(p=0.001)<br>SMOKE*DIOXIN(p=0.009)<br>C-TIME*DIOXIN<br>(p=0.038) |
| d) D>5 ppt<br>(n=511)   | 1.01(0.93,1.09)***               | 0.984*** | RACE(p=0.065)<br>OCC(p=0.011)<br>SMOKE*DIOXIN(p=0.032)<br>C-TIME*DIOXIN<br>(p=0.021) |

### Low Birth Weight (Full Siblings)

#### Model 2: Conceptions of Ranch Hands - $\log_2(\text{Current Dioxin})$ and Time

Without adjustment for covariates (Table 4-23 [a] and [b]), there is no significant variation in the association between abnormally low birth weight and current dioxin with time since duty in SEA among full siblings fathered by Ranch Hands having more than 10 ppt ( $p=0.921$ ) or more than 5 ppt current dioxin ( $p=0.863$ ). Furthermore, there is no significant association between abnormally low birth weight and current dioxin among children of Ranch Hands with late or early tours for either exposure restriction.

After adjustment for covariates (Table 4-23 [c] and [d]), there is no significant variation in the association between abnormally low birth weight and current dioxin with time since duty in SEA among full siblings fathered by Ranch Hands having more than 10 ppt ( $p=0.819$ ) or 5 ppt ( $p=0.655$ ) current dioxin. Furthermore, there is no significant association between abnormally low birth weight and current dioxin among children of Ranch Hands with late or early tours for either exposure restriction.

Table 4-23

## Post SEA Low Birth Weight

Variable: Low Birth Weight (Discrete)  
 Restrictions: Full Siblings of Ranch Hands  
 Children Conceived during or after the  
 Father's Duty in SEA  
 Model 2:  $\log_2(\text{Current Dioxin})$ , Time

Ranch Hands -  $\log_2(\text{Current Dioxin})$ , Time - Unadjusted

| Exposure<br>Restriction | Time Since<br>SEA (years) | Abnormal (No./n) |                   |                  | Est. Relative<br>Risk (95% C.I.) | p-Value |
|-------------------------|---------------------------|------------------|-------------------|------------------|----------------------------------|---------|
|                         |                           | Low              | Medium            | High             |                                  |         |
| a) D>10 ppt<br>(n=419)  |                           |                  |                   |                  |                                  | 0.921   |
|                         | $\leq 18.6$               | 21.3<br>(1/47)   | 105.3<br>(12/114) | 78.1<br>(5/64)   | 1.04(0.66,1.64)                  | 0.856   |
|                         | $>18.6$                   | 107.1<br>(3/28)  | 76.1<br>(7/92)    | 67.6<br>(5/74)   | 1.08(0.70,1.64)                  | 0.734   |
| b) D>5 ppt<br>(n=552)   |                           |                  |                   |                  |                                  | 0.863   |
|                         | $\leq 18.6$               | 86.2<br>(5/58)   | 90.9<br>(13/143)  | 81.6<br>(8/98)   | 0.95(0.69,1.31)                  | 0.763   |
|                         | $>18.6$                   | 134.6<br>(7/52)  | 38.1<br>(4/105)   | 114.6<br>(11/96) | 0.92(0.49,1.70)                  | 0.782   |

Table 4-23 (Continued)

Ranch Hands -  $\log_2$ (Current Dioxin), Time - Adjusted

| Exposure Restriction   | Time Since SEA (years) | Adj. Relative Risk (95% C.I.) | p-Value | Covariate Remarks                               |
|------------------------|------------------------|-------------------------------|---------|-------------------------------------------------|
| c) D>10 ppt<br>(n=391) |                        |                               | 0.819   | RACE(p=0.025)<br>SMOKE(p=0.109)<br>OCC(p=0.003) |
|                        | ≤18.6                  | 1.31(0.77,2.23)               | 0.318   |                                                 |
|                        | >18.6                  | 1.21(0.75,1.97)               | 0.438   |                                                 |
| d) D>5 ppt<br>(n=511)  |                        |                               | 0.665   | RACE(p=0.076)<br>OCC(p=0.024)                   |
|                        | ≤18.6                  | 0.91(0.62,1.35)               | 0.640   |                                                 |
|                        | >18.6                  | 1.01(0.72,1.41)               | 0.944   |                                                 |

## Low Birth Weight (Full Siblings)

## Model 3: Conceptions of Ranch Hands and Comparisons - Categorized Current Dioxin

Without adjustment for covariates (Table 4-24 [a]), there is a significant overall association between abnormally low birth weight and categorized current dioxin among full siblings ( $p=0.004$ ). Furthermore, the rates of low birth weight among children of Ranch Hands in the High ( $p=0.004$ ) and Unknown ( $p=0.001$ ) categories are significantly higher than the rate among children of Comparisons in the Background category. The rate of abnormally low birth weight among children of Ranch Hands in the Low category is not significantly different from the rate among children of Comparisons in the Background category ( $p=0.228$ ).

After adjustment for covariates (Table 4-24 [b]), there is significant variation in the overall association between abnormally low birth weight and categorized current dioxin with the father's military occupation ( $p=0.004$ ) and race ( $p=0.021$ ) among full siblings. The basis for this variation is displayed in Appendix B-1. In children of nonblack enlisted flyers, the rates of abnormally low birth weight among children of fathers in the High ( $p=0.012$ ) and Low ( $p=0.011$ ) categories are significantly higher than the rate among children of fathers in the Background category. In children of nonblack enlisted ground personnel, the rates of abnormally low birth weight among children of fathers in the High ( $p=0.039$ ) and Unknown ( $p=0.038$ ) categories are significantly higher than the rate among children of fathers in the Background category.

In children of Black fathers, significance testing could be done only in children of officers in the Unknown and the Background categories because of sparse data. No significant difference exists between rate of abnormally low birth weight in children of fathers in the Unknown category and the rate in children of fathers in the Background category (p=0.180).

Table 4-24

Post SEA Low Birth Weight

Variable: Low Birth Weight (Discrete)  
 Restrictions: Full Siblings of Ranch Hands and Comparisons  
 Children Conceived during or after the  
 Father's Duty in SEA  
 Model 3: Categorized Current Dioxin

a) Unadjusted

| Exposure Category | n    | Abnormal Number | Category Rate | Contrast      | Est. Relative Risk (95% C.I.) | p-Value |
|-------------------|------|-----------------|---------------|---------------|-------------------------------|---------|
| Background        | 803  | 36              | 44.8          | All Exp Categ |                               | 0.004   |
| Unknown           | 216  | 22              | 101.9         | Unk vs Bkgd   | 2.42(1.39,4.20)               | 0.001   |
| Low               | 147  | 10              | 68.0          | Low vs Bkgd   | 1.56(0.75,3.21)               | 0.228   |
| High              | 194  | 19              | 97.9          | High vs Bkgd  | 2.31(1.30,4.13)               | 0.004   |
| Total             | 1360 |                 |               |               |                               |         |

b) Adjusted

| Exposure Category | n    | Category Contrast | Adj. Relative Risk (95% C.I.) | p-Value | Covariate Remarks    |
|-------------------|------|-------------------|-------------------------------|---------|----------------------|
| Background        | 713  | All Exp Categ     | ****                          | ****    | SMOKE(p=0.001)       |
| Unknown           | 197  | Unk vs Bkgd       |                               |         | RACE*DIOXIN(p=0.021) |
| Low               | 137  | Low vs Bkgd       |                               |         | OCC*DIOXIN(p=0.004)  |
| High              | 180  | High vs Bkgd      |                               |         |                      |
| Total             | 1227 |                   |                               |         |                      |

#### 4.4 Conclusion

Throughout this section, nonsignificant results are indicated by NS, borderline significant results are indicated by NS\* and the presence of interactions with the p-value greater than or equal to 0.01 and less than 0.05 are indicated with a preceding asterisk (\*\*). Four asterisks (\*\*\*\*) represent the presence of an interaction between a covariate and dioxin with a p-value less than 0.01.

Assessments of the association between paternal dioxin and birth weight and abnormally low birth weight were carried out based on pre-SEA and post-SEA children using Models 1, 2 and 3. Each analysis was carried out without adjustment for covariates. All analyses were first based on all children and again on full sibling children. The results are summarized in Tables 4-25 through 4-27.

Table 4-25

P-Value Summary of Initial Dioxin (Model 1) Analyses  
of Pre-Post Birth Weight  
(Children of Ranch Hands)

---

a) All Children

| Variable         | Unadjusted |         |
|------------------|------------|---------|
|                  | D>10 ppt   | D>5 ppt |
| Birth Weight     | NS*        | 0.003   |
| Low Birth Weight | NS         | NS      |

b) Full Siblings

| Variable         | Unadjusted |         |
|------------------|------------|---------|
|                  | D>10 ppt   | D>5 ppt |
| Birth Weight     | 0.039      | 0.004   |
| Low Birth Weight | NS         | NS      |

Table 4-26

**P-Value Summary of Current Dioxin and Time Analyses (Model 2) of  
Pre-Post SEA Birth Weight  
(Children of Ranch Hands)**

## a) All Children

| Variable         | Unadjusted |         |
|------------------|------------|---------|
|                  | D>10 ppt   | D>5 ppt |
| Birth Weight     | NS         | NS      |
| Low Birth Weight | NS         | NS      |

## b) Full Siblings

| Variable         | Unadjusted |         |
|------------------|------------|---------|
|                  | D>10 ppt   | D>5 ppt |
| Birth Weight     | NS         | NS      |
| Low Birth Weight | NS         | NS      |

Table 4-27

**P-Value Summary of Pre-Post SEA Categorized Current Dioxin (Model 3)  
Analyses of Birth Weight (Children of Ranch Hands and Comparisons)**

## a) All Children

| Variable         | All   | Unadjusted<br>Contrasts with Background |       |      |
|------------------|-------|-----------------------------------------|-------|------|
|                  |       | Unknown                                 | Low   | High |
| Birth Weight     | 0.018 | NS                                      | 0.044 | NS   |
| Low Birth Weight | 0.011 | 0.001                                   | NS*   | NS   |

## b) Full Siblings

| Variable         | All   | Unadjusted<br>Contrasts with Background |     |      |
|------------------|-------|-----------------------------------------|-----|------|
|                  |       | Unknown                                 | Low | High |
| Birth Weight     | 0.045 | NS*                                     | NS  | NS   |
| Low Birth Weight | 0.014 | 0.002                                   | NS* | NS   |

Assessments of the association between paternal dioxin and birth weight and abnormally low birth weight were carried out based on post-SEA children using Models 1, 2 and 3. Each analysis was carried out without and then with adjustment for covariates. All analyses were first based on all post-SEA children and again on post-SEA full sibling children. The results are summarized in Tables 4-28 through 4-30.

Table 4-28

P-Value Summary of Initial Dioxin (Model 1) Analyses  
of Post-SEA Birth Weight  
(Children of Ranch Hands)

a) All Children

| Variable         | Unadjusted |         | Adjusted |         |
|------------------|------------|---------|----------|---------|
|                  | D>10 ppt   | D>5 ppt | D>10 ppt | D>5 ppt |
| Birth Weight     | NS         | NS      | **NS     | ***     |
| Low Birth Weight | NS         | NS      | NS       | **NS    |

b) Full Siblings

| Variable         | Unadjusted |         | Adjusted |         |
|------------------|------------|---------|----------|---------|
|                  | D>10 ppt   | D>5 ppt | D>10 ppt | D>5 ppt |
| Birth Weight     | NS         | NS*     | **NS     | NS      |
| Low Birth Weight | NS         | NS      | ****     | **NS    |

Table 4-29

P-Value Summary of Current Dioxin and Time Analyses (Model 2) of  
Post-SEA Birth Weight  
(Children of Ranch Hands)

a) All Children

| Variable         | Unadjusted |       |           |         |           |    |
|------------------|------------|-------|-----------|---------|-----------|----|
|                  | D>10 ppt   |       |           | D>5 ppt |           |    |
|                  | Dioxin by  |       | Dioxin by |         | Dioxin by |    |
| Time             | Late       | Early | Time      | Late    | Early     |    |
| Birth Weight     | NS         | NS    | NS        | NS      | NS        | NS |
| Low Birth Weight | NS         | NS    | NS        | NS      | NS        | NS |

Table 4-29 (Continued)

| Variable                | Adjusted                                 |       |       |                                         |      |       |
|-------------------------|------------------------------------------|-------|-------|-----------------------------------------|------|-------|
|                         | D>10 ppt<br>Dioxin by<br>Time Late Early |       |       | D>5 ppt<br>Dioxin by<br>Time Late Early |      |       |
|                         | Time                                     | Late  | Early | Time                                    | Late | Early |
| Birth Weight            | **NS                                     | **NS* | **NS  | **NS                                    | **NS | **NS  |
| Low Birth Weight        | NS                                       | NS    | NS    | **NS                                    | **NS | **NS  |
| <b>b) Full Siblings</b> |                                          |       |       |                                         |      |       |
| Variable                | Unadjusted                               |       |       |                                         |      |       |
|                         | D>10 ppt<br>Dioxin by<br>Time Late Early |       |       | D>5 ppt<br>Dioxin by<br>Time Late Early |      |       |
|                         | Time                                     | Late  | Early | Time                                    | Late | Early |
| Birth Weight            | NS                                       | NS    | NS    | NS                                      | NS   | NS    |
| Low Birth Weight        | NS                                       | NS    | NS    | NS                                      | NS   | NS    |
| <br><b>Adjusted</b>     |                                          |       |       |                                         |      |       |
| Variable                | D>10 ppt<br>Dioxin by<br>Time Late Early |       |       | D>5 ppt<br>Dioxin by<br>Time Late Early |      |       |
|                         | Time                                     | Late  | Early | Time                                    | Late | Early |
|                         | NS                                       | NS*   | NS    | NS                                      | NS   | NS    |
| Birth Weight            | NS                                       | NS    | NS    | NS                                      | NS   | NS    |
| Low Birth Weight        | NS                                       | NS    | NS    | NS                                      | NS   | NS    |

Table 4-30

P-Value Summary of Categorized Current Dioxin Analyses (Model 3)  
of Post-SEA Birth Weight  
(Children of Ranch Hands and Comparisons)

**a) All Children**

| Variable         | All   | Unadjusted<br>Contrasts with Background |     |       |
|------------------|-------|-----------------------------------------|-----|-------|
|                  |       | Unknown                                 | Low | High  |
|                  |       |                                         |     |       |
| Birth Weight     | 0.017 | 0.010                                   | NS  | NS*   |
| Low Birth Weight | 0.002 | 0.001                                   | NS  | 0.003 |

Table 4-30 (Continued)

| Variable                | All     | Adjusted                  |         |         |      |
|-------------------------|---------|---------------------------|---------|---------|------|
|                         |         | Contrasts with Background | Unknown | Low     | High |
| Birth Weight            | **0.002 | **NS                      | **NS    | **0.001 |      |
| Low Birth Weight        | ****    | ****                      | ****    | ****    |      |
| <b>b) Full Siblings</b> |         |                           |         |         |      |
| Variable                | All     | Unadjusted                |         |         |      |
|                         |         | Contrasts with Background | Unknown | Low     | High |
| Birth Weight            | 0.032   | 0.008                     | NS      | NS      |      |
| Low Birth Weight        | 0.004   | 0.001                     | NS      | 0.004   |      |
| Variable                | All     | Adjusted                  |         |         |      |
|                         |         | Contrasts with Background | Unknown | Low     | High |
| Birth Weight            | 0.001   | NS                        | NS      | 0.002   |      |
| Low Birth Weight        | ****    | ****                      | ****    | ****    |      |

Pre-post SEA analyses of birth weight were generally negative. The few significant findings were not suggestive of a dioxin effect. For example, a Model 1 analysis of birth weight (Table 4-1) found a significant interaction with time since tour caused by decreasing birth weights in pre-SEA children and increasing birth weights in post-SEA children. This change was caused by an increase in mean birth weight from pre- to post-SEA in children of Ranch Hands with the highest dioxin levels. Because low birth weights are considered the adverse direction, this finding was not interpretable as an adverse effect of dioxin. A similar significant change in slope was found after restriction to full sibling children. In a Model 3 analysis of abnormally low birth weight (Table 4-9), a significant interaction was found with time of conception in the contrast of children of Ranch Hands in the Unknown category with children of Comparisons in the Background category. Among pre-SEA children, the rate of abnormally low birth weight in Ranch Hand children (61.2 per 1000) was less than that in children of Comparisons (73.5 per 1000) and in post-SEA children, the rate in Ranch Hand children (93.3 per 1000) was greater than that in children of Comparisons (41.9 per 1000), but this change was due more to the decrease in the Comparison rate than to the increase in the Ranch Hand rate, a pattern that cannot be attributed to dioxin. A similar finding was revealed after restriction to full sibling children (Table 4-12).

Post-SEA analyses of birth weight were also generally negative or were complicated by interactions with covariates that lack coherent explanation. For example, a Model 1 analysis of birth weight found a significant interaction with the father's race and the mother's smoking (Table 4-13 [c]), caused by a significant decrease in birth weight with dioxin in children of Black fathers whose mother did not smoke during pregnancy and a borderline significant weight reduction in children of nonblack fathers whose mother did smoke during pregnancy. After restriction to full sibling children, a significant interaction with only the mother's smoking was found (Table 4-16 [d]). In that analysis, there was a significant reduction in birth weight with dioxin in children of mothers who smoked during pregnancy and no significant reduction in children of mothers who did not smoke during pregnancy. A Model 2 analysis of birth weight found a significant interaction with the father's race (Table 4-14 [c]); birth weight decreased borderline significantly with dioxin in children of Black fathers who had early tours but there were no significant associations in the other 3 strata. A Model 3 analysis of birth weight found significant interaction with the father's race (Table 4-15 [b]); the birth weight of children fathered by Black Ranch Hands in the High category was significantly less than that of children born to Black Comparisons in the Background category and a weaker reduction was found in children of nonblack Ranch Hands in the High category. After restriction to full siblings (Table 4-18 [b]), children of Ranch Hands in the High category were found to have significantly lower birth weight than children of Comparisons in the Background category.

Post-SEA analyses of abnormally low birth weight were generally negative or were complicated by interactions with covariates. For example, a Model 1 analysis (Table 4-19 [d]) found a significant interaction with the father's race and with the mother's drinking during pregnancy. This interaction was caused by a significant increase in the rate of abnormally low birth weight in children of nonblack fathers whose mother drank during pregnancy, however, the number of children (35) and the number with abnormally low birth weight (3) in this stratum were small; no significant associations were found in the other 3 strata. After restriction to full siblings (Table 4-22 [d]), a significant interaction was found with the mother's smoking during pregnancy and with the time of conception. This interaction was caused by a significant reduction in the risk of abnormally low birth weight in children conceived within 2 years of the father's departure from SEA whose mother did not smoke during pregnancy. A Model 2 analysis of abnormally low birth weight (Table 4-20 [d]) found a significant interaction with time of conception. This interaction was caused by a significant increase in risk in children conceived more than 6.5 years after the father's departure from SEA whose father had an early tour. In the same analysis, however, there was a borderline significant decrease in risk in children conceived within 2 years of the father's departure from SEA whose father had an early tour. After restriction to full sibling children (Table 4-23), no significant associations were found between abnormally low birth weight and dioxin and no significant interaction with covariates were found. A Model 3 analysis of abnormally low birth weight (Table 4-21 [b]) found a significant interaction with the father's military occupation in SEA,

caused by a significant increase in risk in children of father's who were enlisted ground personnel. After restriction to full sibling children (Table 4-24 [b]), a significant interaction with the father's race and military occupation in SEA were found, caused by significant increases in risk in children of nonblack Ranch Hands in the High category who were enlisted flyers or who were enlisted ground personnel.

These findings are inconsistent because the nature of an interaction sometimes changes after restriction to full sibling children and because birth weight decreases with dioxin in some strata and increases in others. These findings are also weak because many of the interactions are based on sparse data. Therefore these results appear unrelated to dioxin. We find no evidence in these data that birth weight is adversely associated with the father's dioxin exposure.

## 5. PRE-POST SEA BIRTH DEFECTS

### 5.1 Introduction

Four issues are addressed here: (1) Can the baseline analysis be reproduced with the current database? (2) Does the baseline result hold for verified data? (3) If the baseline result holds for verified data, is the effect related to dioxin body burden? and (4) If the baseline result holds for verified data, is the effect more predominant in one or more of the 12 CDC categories of birth defects?

### 5.2 The Baseline Birth Defect Definition

At baseline, we used ICD-9-CM birth defect categories [14] which included 12 additional categories of anomalies not included in the CDC definition (Table 1-11). These 12 categories are summarized in Table 5-1. Table 5-1 also shows the numbers of children in each category by group and time of conception of the child relative to the father's duty in SEA and the corresponding rate per 1000 live births. The denominators for the rate calculations are shown in each column heading. These denominators are the total number of post-SEA live births of Ranch Hands and Comparisons who are included, according to their dioxin level, in any of the three statistical analyses. These denominators can be referenced to Table 1-6. For example, the 1772 post-SEA live births for all live births in Table 1-6 is the sum of the 791 Ranch Hands and 981 Comparisons in Table 5-1.

Table 5-1

**Counts and Rates Of Live Births by Category  
of Anomaly Included in the Baseline Definition but not  
Included in the CDC Definition of Birth Defect**

Restriction: All Live Births in Models 1, 2 or 3

Categories: Time of Conception the  
Father's Group Membership

| Category                                                      | Time of Conception Relative<br>to the Father's Duty in SEA |                       |                         |                      |
|---------------------------------------------------------------|------------------------------------------------------------|-----------------------|-------------------------|----------------------|
|                                                               | Pre-SEA<br>RH<br>n=1283                                    | Comparisons<br>n=1459 | Post-SEA<br>RH<br>n=791 | Comparisons<br>n=981 |
| 1. All 12 categories                                          | 88(68.6)                                                   | 95(65.1)              | 101(127.7)              | 129(131.5)           |
| 2. Benign neoplasm of skin 216                                | 36(28.1)                                                   | 34(24.7)              | 35(44.2)                | 43(43.8)             |
| 3. Hemangioma and Lymphangioma<br>any site 228                | 12(9.4)                                                    | 16(11.0)              | 14(17.7)                | 25(25.5)             |
| 4. Neoplasms of unspecified<br>nature of bone, skin etc 239.2 | 0(0.0)                                                     | 0(0.0)                | 0(0.0)                  | 0(0.0)               |
| 5. Chorioretinitis 363.2                                      | 0(0.0)                                                     | 0(0.0)                | 0(0.0)                  | 0(0.0)               |
| 6. Wolff-Parkinson-White<br>syndrome 426.7                    | 2(1.6)                                                     | 1(0.7)                | 2(2.5)                  | 0(0.0)               |
| 7. Major anomalies of jaw<br>size 524.0                       | 1(0.8)                                                     | 3(2.1)                | 2(2.5)                  | 2(2.0)               |
| 8. Inguinal hernia 550                                        | 24(18.7)                                                   | 30(20.6)              | 17(21.5)                | 29(29.6)             |
| 9. Umbilical hernia 553.1                                     | 14(10.9)                                                   | 7(4.8)                | 23(29.1)                | 21(21.4)             |
| 10. Epigastric hernia 553.29                                  | 0(0.0)                                                     | 0(0.0)                | 0(0.0)                  | 0(0.0)               |
| 11. Amniotic bands 658.8                                      | 0(0.0)                                                     | 0(0.0)                | 0(0.0)                  | 0(0.0)               |
| 12. Pilonidal sinus or<br>dimple 685.1                        | 0(0.0)                                                     | 1(0.7)                | 2(2.5)                  | 1(1.0)               |
| 13. Hydrocele 778.6                                           | 14(10.9)                                                   | 12(8.2)               | 22(27.8)                | 23(23.4)             |

If a child was verified as having multiple birth defects, the child was counted in each category for which a birth defect was verified (see Section 1.6), but only once within a given category. For example, if a child had a verified nervous system defect and a verified circulatory defect, that child was counted in both categories. However, if a child had two verified nervous system defects, that child was counted only once in the nervous system category.

The corresponding cross classification of children according to the 12 additional baseline birth defect categories without the restriction to children whose fathers dioxin level included him in Model 1, 2 or 3 analyses is shown in Appendix Table C-1. The live births shown in Table C-1 are fathered by participants whose dioxin assay result was quantitable, not quantitable or missing.

### 5.3 The Baseline Analysis using Mother's Report, the Baseline Birth Defect Definition and Current Data

The current database is improved relative to the baseline database. At baseline, none of the information regarding children was verified. Therefore, the file contained errors in childrens birth dates, parentage, and birth defect status. Additionally, some children were not accounted for at all. In the interim, all of these errors have been corrected. Using the current database, all live births occurring at or before the participants baseline examination were considered and only the spouses reported assessment was used to categorize children. These inclusion criteria are identical to those used in the initial baseline birth defect analysis. The results were cross classified by reported defect (yes,no), group (Ranch Hand, Comparison) and time of conception relative to the father's duty in SEA. The results are shown in Table 5-2.

Table 5-2

Reported Birth Defects in Children Born At or Prior to Baseline by Time of Conception Relative to the Father's Duty in SEA Using Current Data and the Baseline Definition of Birth Defect

| Time of Conception | Group      | Any Reported Birth Defect |      | Total | Odds Ratio | p-Value |
|--------------------|------------|---------------------------|------|-------|------------|---------|
|                    |            | Yes (Rate)                | No   |       |            |         |
| Pre-SEA            | Ranch Hand | 93(58.8)                  | 1489 | 1582  | 0.752      | 0.001   |
|                    | Comparison | 136(76.7)                 | 1637 | 1773  |            |         |
| Post-SEA           | Ranch Hand | 105(128.0)                | 715  | 820   | 1.558      |         |
|                    | Comparison | 89(86.2)                  | 944  | 1033  |            |         |

An analysis of Table 5-2 reveals that the change in the odds ratio from 0.752 to 1.558 is statistically significant ( $p=0.001$ ).

These data were further analyzed to determine whether the significant effect is explained by group differences in the mother's age at the time of conception. An analysis adjusted for the mother's age found that the change in the odds ratio for reported defect with time of conception relative to father's service in SEA was not significantly influenced by the mother's age ( $p=0.835$ ).

#### 5.4 The Baseline Analysis using Mother's Report, the Baseline Birth Defect Definition, Restricted to Children Born During or Prior to the Father's Baseline Physical Examination, Adjusted for Dioxin Level

These data were further analyzed to assess the relationship between the change in relative risk (Table 5-3) and levels of dioxin body burden of the father. The change in the odds ratios is significantly associated with categorized dioxin ( $p=0.038$ ). The association between reported birth defect and time of conception among children of Ranch Hands in the High category (OR=2.82) is significantly greater than that in children of Comparisons in the Background category (OR=1.14),  $p=0.040$ . The corresponding odds ratio in children of Ranch Hands in the Low category is also significantly increased relative to that in children of Comparisons in the Background category ( $p=0.024$ ). The odds ratio in children of Ranch Hands in the Unknown category is not significantly different from that in the Background category ( $p=0.163$ ). Thus, the baseline finding appears to be dose-related.

Table 5-3

**Odds Ratios for Mothers Reported Birth Defect by the Father's  
Categorized Current Dioxin by Time of Conception  
Relative to the Father's Duty in SEA Tour Among Children Born  
At or Prior to the Baseline Physical Examination**

| Categorized Dioxin | Time of Conception | Reported Birth Defect |       | Odds Ratio | p-value for Comparison with Background OR |
|--------------------|--------------------|-----------------------|-------|------------|-------------------------------------------|
|                    |                    | Yes (Rate)            | Total |            |                                           |
| Background         | Pre-SEA            | 109 (79.3)            | 1374  | 1.14       | 0.038                                     |
|                    | Post-SEA           | 72 (89.2)             | 807   |            |                                           |
| Unknown            | Pre-SEA            | 36 (61.9)             | 582   | 1.76       | 0.163                                     |
|                    | Post-SEA           | 25 (104.2)            | 240   |            |                                           |
| Low                | Pre-SEA            | 20 (70.9)             | 282   | 2.50       | 0.024                                     |
|                    | Post-SEA           | 26 (160.5)            | 162   |            |                                           |
| High               | Pre-SEA            | 8 (48.8)              | 164   | 2.82       | 0.040                                     |
|                    | Post-SEA           | 25 (126.3)            | 198   |            |                                           |

**5.5 The Baseline Analysis using Mother's Report and Subsequently Verified using the Baseline Birth Defect Definition, Restricted to Children Born During or Prior to the Father's Baseline Physical Examination**

These data were reanalyzed by restricting birth defects to only those that were both reported by the mother and subsequently verified by review of medical records of the child. These data are summarized in Table 5-4 by the fathers group (Ranch Hand, Comparison) and time of conception (pre-SEA, post-SEA).

The change in the odds ratio with time of conception relative to fathers duty in SEA (Table 5-4) is significant for birth defects reported by the mother and subsequently verified ( $p=0.032$ ). Analyses with adjustment for mothers age did not alter this finding.

Table 5-4

**Reported and Subsequently Verified Birth Defects in Children Born at or Prior to Baseline by Time of Conception Relative to the Father's Duty in SEA**

| Time of Conception | Group      | Reported and Verified Birth Defect |        |      | Total | Odds Ratio | p-Value |
|--------------------|------------|------------------------------------|--------|------|-------|------------|---------|
|                    |            | Yes                                | (Rate) | No   |       |            |         |
| Pre-SEA            | Ranch Hand | 58                                 | (36.7) | 1524 | 1582  | 0.850      | 0.032   |
|                    | Comparison | 76                                 | (42.9) | 1697 | 1773  |            |         |
| Post-SEA           | Ranch Hand | 75                                 | (91.5) | 745  | 820   | 1.451      |         |
|                    | Comparison | 67                                 | (64.9) | 966  | 1033  |            |         |

**5.6 The Baseline Analysis using Mother's Report and Subsequently Verified using the Baseline Definition of Birth Defect, Restricted to Children Born During or Prior to the Father's Baseline Physical Examination, Adjusted for Dioxin Level**

Reanalysis of the data in Table 5-5 to assess the significance of variation in the association between reported birth defects and time of conception with categorized dioxin were carried out. The results are shown in Table 5-5.

There is no variation in the overall association between reported and subsequently verified birth defects and categorized dioxin with time of birth relative to the fathers SEA duty ( $p=0.549$ ). The association between reported and subsequently verified birth defect and time of birth in children of Ranch Hands in the High ( $p=0.528$ ), Low ( $p=0.382$ ) and Unknown ( $p=0.196$ ) categories does not differ significantly from that in children of Comparisons in the Background category.

Table 5-5

**Odds Ratios for Mothers Reported Birth Defect and Subsequently Verified, By Father's Categorized Current Dioxin by Time of Birth Relative to Father's Duty in SEA Tour Among Children Born At or Prior to Baseline Physical Examination**

| Categorized Dioxin | Time of Birth | Reported & Verified Birth Defect |       | Odds Ratio | p-Value for Comparison with Background OR |
|--------------------|---------------|----------------------------------|-------|------------|-------------------------------------------|
|                    |               | yes (Rate)                       | Total |            |                                           |
| Background         | Pre-SEA       | 59 (42.9)                        | 1374  | 1.66       | 0.549                                     |
|                    | Post-SEA      | 56 (69.4)                        | 807   |            |                                           |
| Unknown            | Pre-SEA       | 20 (34.4)                        | 582   | 2.69       | 0.196                                     |
|                    | Post-SEA      | 21 (87.5)                        | 240   |            |                                           |
| Low                | Pre-SEA       | 14 (49.6)                        | 282   | 2.39       | 0.382                                     |
|                    | Post-SEA      | 18 (111.1)                       | 162   |            |                                           |
| High               | Pre-SEA       | 6 (36.6)                         | 164   | 2.32       | 0.528                                     |
|                    | Post-SEA      | 16 (80.8)                        | 198   |            |                                           |

**5.7 The Baseline Analysis using Verified Data, the CDC Definition of Birth Defect, Restricted to Children Born During or Prior to the Father's Baseline Physical Examination**

Live births occurring at or before the participant's baseline examination were categorized by verified birth defect (yes,no), group (Ranch Hand, Comparison) and time of conception relative to father's service in SEA. The results are shown in Table 5-6.

Table 5-6

**Verified Birth Defects in Children Born at or Prior to Baseline by  
Time of Conception Relative to the Father's Duty in SEA  
Using Current Data and the CDC Definition of Birth Defect**

| Time of<br>Conception | Group      | Verified<br>Birth Defect |         | No   | Total | Odds<br>Ratio | p-Value |
|-----------------------|------------|--------------------------|---------|------|-------|---------------|---------|
|                       |            | Yes                      | (Rate)  |      |       |               |         |
| Pre-SEA               | Ranch Hand | 162                      | (102.4) | 1420 | 1582  | 0.934         | 0.164   |
|                       | Comparison | 193                      | (108.9) | 1580 | 1773  |               |         |
| Post-SEA              | Ranch Hand | 162                      | (197.6) | 658  | 820   | 1.175         |         |
|                       | Comparison | 179                      | (173.3) | 854  | 1033  |               |         |

The change in the odds ratio (Table 5-6) from 0.934 to 1.175 is not significant (p=0.164).

A cross tabulation of all live births according to the 13 CDC birth defect categories by group and time of conception relative to the father's duty in SEA among all children whose father had a dioxin level that included him in Models 1, 2 or 3 analyses is shown in Table 5-7.

Table 5-7

## Counts and Rates Of Live Births by CDC Category of Anomaly

Restriction: All Live Births in Models 1, 2 or 3

Categories: Time of Conception Relative to the Father's Duty in SEA

| Category                                  | Time of Conception Relative to the Father's Duty in SEA |                       |                         |                      |
|-------------------------------------------|---------------------------------------------------------|-----------------------|-------------------------|----------------------|
|                                           | Pre-SEA<br>RH<br>n=1283                                 | Comparisons<br>n=1459 | Post-SEA<br>RH<br>n=791 | Comparisons<br>n=981 |
| 1. Total congenital anomalies             | 140(109.1)                                              | 158(108.3)            | 177(223.8)              | 204(208.0)           |
| 2. Nervous system anomalies               | 4(3.1)                                                  | 7(4.8)                | 5(6.3)                  | 3(3.1)               |
| 3. Eye anomalies                          | 6(4.7)                                                  | 6(4.1)                | 9(11.4)                 | 7(7.1)               |
| 4. Ear, face, neck anomalies              | 7(5.5)                                                  | 8(5.5)                | 13(16.4)                | 11(11.2)             |
| 5. Circulatory system and heart anomalies | 15(11.7)                                                | 15(10.3)              | 17(21.5)                | 16(16.3)             |
| 6. Respiratory system anomalies           | 0(0.0)                                                  | 1(0.7)                | 4(5.1)                  | 2(2.0)               |
| 7. Digestive system anomalies             | 18(14.0)                                                | 15(10.3)              | 18(22.8)                | 24(24.5)             |
| 8. Genital anomalies                      | 15(11.7)                                                | 15(10.3)              | 15(19.0)                | 18(18.3)             |
| 9. Urinary system anomalies               | 18(14.0)                                                | 21(14.4)              | 17(21.5)                | 12(12.2)             |
| 10. Musculoskeletal deformities           | 68(53.0)                                                | 81(55.5)              | 99(125.2)               | 132(134.6)           |
| 11. Anomalies of the skin                 | 13(10.1)                                                | 11(7.5)               | 15(19.0)                | 21(21.4)             |
| 12. Chromosomal anomalies                 | 2(1.6)                                                  | 2(1.4)                | 4(5.1)                  | 3(3.1)               |
| 13. Other and Unspecified                 | 6(4.7)                                                  | 3(2.1)                | 4(5.1)                  | 2(2.0)               |

Analyses of the same type used at baseline were carried out for each of the 13 CDC categories of birth defects on children born at or before the father's baseline physical examination using verified birth defect data. Data in only 7 of the 13 categories were analyzable (total congenital, circulatory and heart, digestive system, genital, urinary, musculoskeletal and skin) due to sparse data in the other categories. The results are shown in Table 5-8.

Table 5-8

Verified Birth Defects in Children Born at or Prior to Baseline by  
 Time of Conception Relative to the Father's Duty in SEA Current Data  
 Within each of 7 CDC Birth Defect Categories

| Defect Category       | Time of Conception | Group | Verified Birth Defect |       |       | Odds Ratio | p-value |
|-----------------------|--------------------|-------|-----------------------|-------|-------|------------|---------|
|                       |                    |       | Yes                   | Total | Rate  |            |         |
| Total Congenital      | Pre-SEA            | RH    | 162                   | 1582  | 102.4 | 0.93       | 0.164   |
|                       |                    | C     | 193                   | 1773  | 108.9 |            |         |
| Circulatory and Heart | Post-SEA           | RH    | 162                   | 820   | 197.6 | 1.17       | 0.417   |
|                       |                    | C     | 179                   | 1033  | 173.3 |            |         |
| Digestive System      | Pre-SEA            | RH    | 16                    | 1582  | 10.1  | 0.90       | 0.742   |
|                       |                    | C     | 20                    | 1773  | 11.3  |            |         |
| Genital               | Post-SEA           | RH    | 13                    | 820   | 15.9  | 1.37       | 0.918   |
|                       |                    | C     | 12                    | 1033  | 11.6  |            |         |
| Urinary               | Pre-SEA            | RH    | 21                    | 1582  | 13.3  | 1.31       | 0.092   |
|                       |                    | C     | 18                    | 1773  | 10.2  |            |         |
|                       | Post-SEA           | RH    | 16                    | 820   | 19.5  | 0.94       | 0.092   |
|                       |                    | C     | 18                    | 1033  | 17.4  |            |         |
|                       | Pre-SEA            | RH    | 16                    | 1582  | 10.1  | 0.96       | 0.092   |
|                       |                    | C     | 20                    | 1773  | 11.3  |            |         |
|                       | Post-SEA           | RH    | 12                    | 820   | 14.6  | 2.39       | 0.092   |
|                       |                    | C     | 16                    | 1033  | 15.5  |            |         |

Table 5-8 (Continued)

| Defect Category  | Time of Conception | Group | Verified Birth Defect |       |       | Odds Ratio | p-value |
|------------------|--------------------|-------|-----------------------|-------|-------|------------|---------|
|                  |                    |       | Yes                   | Total | Rate  |            |         |
| Musculo-skeletal | Pre-SEA            | RH    | 82                    | 1582  | 51.8  |            |         |
|                  |                    | C     | 103                   | 1773  | 58.1  | 0.89       |         |
|                  | Post-SEA           | RH    | 91                    | 820   | 111.0 |            |         |
|                  |                    | C     | 111                   | 1033  | 107.5 | 1.04       | 0.463   |
| Skin             | Pre-SEA            | RH    | 13                    | 1582  | 8.2   |            |         |
|                  |                    | C     | 12                    | 1773  | 6.8   | 1.22       |         |
|                  | Post-SEA           | RH    | 18                    | 820   | 22.0  |            |         |
|                  |                    | C     | 21                    | 1033  | 20.3  | 1.08       | 0.821   |

Without adjustment for covariates (Table 5-8) there is borderline significant variation in the association between urinary anomaly ( $p=0.092$ ) and the father's group membership with time of conception. This significance is due to a change in the odds ratio from 0.96 to 2.39 from pre-SEA to post-SEA. There is no significant variation in the association between total congenital anomalies ( $p=0.164$ ), circulatory and heart anomalies ( $p=0.417$ ), digestive system anomalies ( $p=0.742$ ), genital anomalies ( $p=0.918$ ), musculoskeletal deformities ( $p=0.463$ ) or anomalies of the skin ( $p=0.821$ ) and fathers group membership with time of conception.

### 5.8 The Baseline Analysis using Verified Data and the CDC Definition of Birth Defects

These analyses were also carried out without the restriction that the children be born prior to the father's baseline physical examination. In this unrestricted approach, all 13 categories of defects are analyzable. The results are shown in Table 5-9.

Table 5-9

Verified Birth Defects in All Children by Time of Conception  
 Relative to the Father's Duty in SEA Using Current Data  
 Within each of 13 CDC Birth Defect Categories (n=6792)

| Defect Category       | Time of Conception | Group | Verified Birth Defect |       |       | Odds Ratio | p-value |
|-----------------------|--------------------|-------|-----------------------|-------|-------|------------|---------|
|                       |                    |       | Yes                   | Total | Rate  |            |         |
| Total Congenital      | Pre-SEA            | RH    | 184                   | 1805  | 101.9 | 0.93       |         |
|                       |                    | C     | 254                   | 2340  | 108.5 |            |         |
|                       | Post-SEA           | RH    | 229                   | 1045  | 219.1 | 1.28       | 0.028   |
|                       |                    | C     | 289                   | 1602  | 180.4 |            |         |
| Nervous System        | Pre-SEA            | RH    | 4                     | 1805  | 2.2   | 0.47       |         |
|                       |                    | C     | 11                    | 2340  | 4.7   |            |         |
|                       | Post-SEA           | RH    | 5                     | 1045  | 4.8   | 1.92       | 0.105   |
|                       |                    | C     | 4                     | 1602  | 2.5   |            |         |
| Eye                   | Pre-SEA            | RH    | 7                     | 1805  | 3.9   | 1.01       |         |
|                       |                    | C     | 9                     | 2340  | 3.8   |            |         |
|                       | Post-SEA           | RH    | 9                     | 1045  | 8.6   | 1.26       | 0.745   |
|                       |                    | C     | 11                    | 1602  | 6.9   |            |         |
| Ear, Face and Neck    | Pre-SEA            | RH    | 8                     | 1805  | 4.4   | 1.04       |         |
|                       |                    | C     | 10                    | 2340  | 4.3   |            |         |
|                       | Post-SEA           | RH    | 15                    | 1045  | 14.4  | 1.78       | 0.374   |
|                       |                    | C     | 13                    | 1602  | 8.1   |            |         |
| Circulatory and Heart | Pre-SEA            | RH    | 20                    | 1805  | 11.1  | 0.93       |         |
|                       |                    | C     | 28                    | 2340  | 12.0  |            |         |
|                       | Post-SEA           | RH    | 19                    | 1045  | 18.2  | 1.39       | 0.344   |
|                       |                    | C     | 21                    | 1602  | 13.1  |            |         |
| Respiratory System    | Pre-SEA            | RH    | 0                     | 1805  | 0.0   | ----       |         |
|                       |                    | C     | 4                     | 2340  | 1.7   |            |         |
|                       | Post-SEA           | RH    | 5                     | 1045  | 4.8   | 2.56       | 0.028   |
|                       |                    | C     | 3                     | 1602  | 1.9   |            |         |

Table 5-9 (Continued)

| Defect Category         | Time of Conception | Group | Verified Birth Defect |       |       | Odds Ratio | p-value |
|-------------------------|--------------------|-------|-----------------------|-------|-------|------------|---------|
|                         |                    |       | Yes                   | Total | Rate  |            |         |
| Digestive System        | Pre-SEA            | RH    | 22                    | 1805  | 12.2  | 1.36       |         |
|                         |                    | C     | 21                    | 2340  | 9.0   |            |         |
|                         | Post-SEA           | RH    | 22                    | 1045  | 21.1  | 1.13       | 0.649   |
|                         |                    | C     | 30                    | 1602  | 18.7  |            |         |
| Genital                 | Pre-SEA            | RH    | 19                    | 1805  | 10.5  | 0.95       |         |
|                         |                    | C     | 26                    | 2340  | 11.1  |            |         |
|                         | Post-SEA           | RH    | 21                    | 1045  | 20.1  | 1.04       | 0.823   |
|                         |                    | C     | 31                    | 1602  | 19.4  |            |         |
| Urinary                 | Pre-SEA            | RH    | 20                    | 1805  | 11.1  | 0.96       |         |
|                         |                    | C     | 27                    | 2340  | 11.5  |            |         |
|                         | Post-SEA           | RH    | 21                    | 1045  | 20.1  | 2.51       | 0.036   |
|                         |                    | C     | 13                    | 1602  | 8.1   |            |         |
| Musculo-skeletal        | Pre-SEA            | RH    | 94                    | 1805  | 52.1  | 0.92       |         |
|                         |                    | C     | 132                   | 2340  | 56.4  |            |         |
|                         | Post-SEA           | RH    | 132                   | 1045  | 126.3 | 1.14       | 0.239   |
|                         |                    | C     | 180                   | 1602  | 112.4 |            |         |
| Skin                    | Pre-SEA            | RH    | 16                    | 1805  | 8.9   | 0.94       |         |
|                         |                    | C     | 22                    | 2340  | 9.4   |            |         |
|                         | Post-SEA           | RH    | 26                    | 1045  | 24.9  | 1.11       | 0.697   |
|                         |                    | C     | 36                    | 1602  | 22.5  |            |         |
| Chromosomal Abnormality | Pre-SEA            | RH    | 3                     | 1805  | 1.7   | 1.30       |         |
|                         |                    | C     | 3                     | 2340  | 1.3   |            |         |
|                         | Post-SEA           | RH    | 6                     | 1045  | 5.7   | 1.84       | 0.729   |
|                         |                    | C     | 5                     | 1602  | 3.1   |            |         |
| Other                   | Pre-SEA            | RH    | 6                     | 1805  | 3.3   | 2.60       |         |
|                         |                    | C     | 3                     | 2340  | 1.3   |            |         |
|                         | Post-SEA           | RH    | 5                     | 1045  | 4.8   | 2.56       | 0.989   |
|                         |                    | C     | 3                     | 1602  | 1.9   |            |         |

Without adjustment for covariates (Table 5-9), there is significant variation in the association between total congenital ( $p=0.028$ ), respiratory system ( $p=0.028$ ), and urinary system ( $p=0.036$ ) anomalies and the father's group membership with time of conception. There is borderline significant variation in the association between nervous system anomalies ( $p=0.105$ ) and the father's group membership with time of conception. All of these significant and borderline significant findings are caused by the Ranch Hands rate being less than the Comparison rate in pre-SEA children and greater than the Comparison rate in post-SEA children.

Without adjustment for covariates (Table 5-9), there is no significant variation in the association between eye anomalies ( $p=0.745$ ), ear, face and neck anomalies ( $p=0.374$ ), circulatory system and heart anomalies ( $p=0.344$ ), digestive system anomalies ( $p=0.649$ ), genital anomalies ( $p=0.823$ ), musculoskeletal deformities ( $p=0.239$ ), anomalies of the skin ( $p=0.697$ ), chromosomal abnormalities ( $p=0.729$ ) and other anomalies ( $p=0.989$ ) and the father's group membership with time of conception.

## 5.9 Pre-Post SEA Exposure Analyses

Further analyses using Models 1, 2 and 3 were carried out to determine whether any of the pre-post SEA changes in verified birth defect odds ratio were related to the father's dioxin body burden. These analyses are not adjusted for covariates.

### Total Congenital Anomalies (All Children)

#### Model 1: Children of Ranch Hands - $\text{Log}_2(\text{Initial Dioxin})$

Without adjustment for covariates (Table 5-10 [a] and [b]), there is no significant variation in the association between total congenital anomalies and initial dioxin with time of conception among children of Ranch Hands having more than 10 ppt ( $p=0.859$ ) or more than 5 ppt ( $p=0.875$ ) current dioxin.

Table 5-10

Pre-post SEA Counts and Rates Of  
Total Congenital Anomalies

Variable: Total Congenital Anomalies  
 Restrictions: All Children of Ranch Hands  
 Categories: Time of Conception Relative to the Father's Duty in SEA  
 Model 1:  $\log_2$ (Initial Dioxin)

Ranch Hands -  $\log_2$ (Initial Dioxin) - Unadjusted

## Time of Conception Relative to the Father's Duty in SEA

| Exposure<br>Restriction | Initial<br>Dioxin | Pre-SEA |     |       | Post-SEA |     |       | p-Value |
|-------------------------|-------------------|---------|-----|-------|----------|-----|-------|---------|
|                         |                   | n       | Abn | Rate  | n        | Abn | Rate  |         |
| a) D>10 ppt<br>(n=1208) | Low               | 249     | 32  | 128.5 | 106      | 20  | 188.7 | 0.859   |
|                         | Medium            | 338     | 35  | 103.6 | 245      | 68  | 277.6 |         |
|                         | High              | 113     | 13  | 115.0 | 157      | 31  | 197.5 |         |
| b) D>5 ppt<br>(n=1748)  | Low               | 286     | 31  | 108.4 | 155      | 35  | 225.8 | 0.875   |
|                         | Medium            | 616     | 66  | 107.1 | 308      | 72  | 233.8 |         |
|                         | High              | 156     | 19  | 121.8 | 227      | 49  | 215.9 |         |

## Total Congenital Anomalies (All Children)

Model 2: Children of Ranch Hands -  $\log_2$ (Current Dioxin) and Time

Without adjustment for covariates (Table 5-11 [a]), there is no significant variation in the association between total congenital anomalies and current dioxin with time since duty in SEA and time of conception among children of Ranch Hands having more than 10 ppt ( $p=0.162$ ) or more than 5 ppt ( $p=0.573$ ) current dioxin.

Table 5-11

Pre-post SEA Counts and Rates Of  
Total Congenital Anomalies

Variable: Total Congenital Anomalies  
 Restrictions: All Children of Ranch Hands  
 Categories: Time of Conception Relative to the  
                  Father's Duty in SEA  
 Model 2:  $\log_2(\text{Current Dioxin})$ , Time

Ranch Hands -  $\log_2(\text{Current Dioxin})$ , Time - Unadjusted

| Exposure<br>Restriction | Time of<br>Conception | Time Since<br>SEA (years) | Anomaly Rate (No./n) |                          |                   | p-Value |
|-------------------------|-----------------------|---------------------------|----------------------|--------------------------|-------------------|---------|
|                         |                       |                           | Low                  | Current Dioxin<br>Medium | High              |         |
| a) D>10 ppt<br>(n=1210) | Pre-SEA               | ≤18.6                     | 138.7<br>(19/137)    | 158.5<br>(29/183)        | 135.1<br>(5/37)   | 0.162   |
|                         |                       | >18.6                     | 73.7<br>(7/95)       | 70.2<br>(12/171)         | 115.4<br>(9/78)   |         |
|                         | Post-SEA              | ≤18.6                     | 193.5<br>(12/62)     | 253.7<br>(34/134)        | 236.1<br>(17/72)  |         |
|                         |                       | 18.6                      | 275.0<br>(11/40)     | 250.0<br>(27/108)        | 204.3<br>(19/93)  |         |
| b) D>5 ppt<br>(n=1748)  | Pre-SEA               | ≤18.6                     | 95.5<br>(15/157)     | 156.5<br>(49/313)        | 106.1<br>(7/66)   | 0.573   |
|                         |                       | >18.6                     | 80.0<br>(12/150)     | 85.2<br>(23/270)         | 98.0<br>(10/102)  |         |
|                         | Post-SEA              | ≤18.6                     | 266.7<br>(24/90)     | 252.9<br>(44/174)        | 209.1<br>(23/110) |         |
|                         |                       | >18.6                     | 95.2<br>(6/63)       | 279.4<br>(38/136)        | 179.5<br>(21/117) |         |

### Total Congenital Anomalies (All Children)

#### Model 3: Children of Ranch Hands and Comparisons - Categorized Current Dioxin

Without adjustment for covariates (Table 5-12), there is no significant variation in the overall association between total congenital anomalies and categorized current dioxin with time of conception ( $p=0.726$ ). Furthermore, the associations between total congenital anomalies and time of conception in children of Ranch Hands in the High ( $p=0.970$ ), Low ( $p=0.263$ ) and Unknown ( $p=0.871$ ) categories do not differ from that in children of Comparisons in the Background category.

Table 5-12

#### Pre-post SEA Counts and Rates of Total Congenital Anomalies

Variable: Total Congenital Anomalies  
Restrictions: All Children of Ranch Hands and Comparisons  
Categories: Time of Conception Relative to the Father's Duty in SEA  
Model 3: Categorized Current Dioxin

---

#### Categorized Current Dioxin - Unadjusted

##### Time of Conception Relative to the Father's Duty in SEA

| Exposure Category |      | Pre-SEA |       |      | Post-SEA |       |      | Odds Ratio    | Category Contrast | p-Value |
|-------------------|------|---------|-------|------|----------|-------|------|---------------|-------------------|---------|
|                   | n    | Abn     | Rate  | n    | Abn      | Rate  |      |               |                   |         |
| Background        | 1459 | 158     | 108.3 | 981  | 204      | 208.0 | 2.16 | All Exp Categ | 0.726             |         |
| Unknown           | 582  | 59      | 101.4 | 282  | 57       | 202.1 | 2.25 | Unk vs Bkgd   | 0.871             |         |
| Low               | 290  | 36      | 124.1 | 174  | 51       | 293.1 | 2.93 | Low vs Bkgd   | 0.263             |         |
| High              | 168  | 17      | 101.2 | 227  | 44       | 193.8 | 2.14 | High vs Bkgd  | 0.970             |         |
| Total             | 2499 |         |       | 1664 |          |       |      |               |                   |         |

---

### Total Congenital Anomalies (Full Siblings)

#### Model 1: Children of Ranch Hands - $\log_2$ (Initial Dioxin)

Without adjustment for covariates (Table 5-13 [a] and [b]), there is no significant variation in the association between total congenital anomalies and initial dioxin with time of conception among full sibling children of Ranch Hands having more than 10 ppt ( $p=0.570$ ) or more than 5 ppt ( $p=0.772$ ) current dioxin.

Table 5-13

Pre-post SEA Counts and Rates of  
Total Congenital Anomalies

Variable: Total Congenital Anomalies  
 Restrictions: Full Siblings of Ranch Hands  
 Categories: Time of Conception Relative to the  
                  Father's Duty in SEA  
 Model 1:  $\log_2(\text{Initial Dioxin})$

Ranch Hands -  $\log_2(\text{Initial Dioxin})$  - UnadjustedTime of Conception Relative  
to the Father's Duty in SEA

| Exposure<br>Restriction | Initial<br>Dioxin | Pre-SEA |     |       | Post-SEA |     |       | p-Value |
|-------------------------|-------------------|---------|-----|-------|----------|-----|-------|---------|
|                         |                   | n       | Abn | Rate  | n        | Abn | Rate  |         |
| a) D>10 ppt<br>(n=1030) | Low               | 231     | 30  | 129.9 | 78       | 16  | 205.1 | 0.570   |
|                         | Medium            | 276     | 26  | 94.2  | 206      | 57  | 276.7 |         |
|                         | High              | 103     | 13  | 126.2 | 136      | 27  | 198.5 |         |
| b) D>5 ppt<br>(n=1489)  | Low               | 252     | 29  | 115.1 | 114      | 20  | 175.4 | 0.772   |
|                         | Medium            | 545     | 59  | 108.3 | 245      | 58  | 236.7 |         |
|                         | High              | 135     | 16  | 118.5 | 198      | 44  | 222.2 |         |

## Total Congenital Anomalies (Full Siblings)

Model 2: Children of Ranch Hands -  $\log_2(\text{Current Dioxin})$  and Time

Without adjustment for covariates (Table 5-14 [a]), there is no significant change in the association between total congenital anomalies and current dioxin with time since duty in SEA and time of conception among full sibling children of Ranch Hands having more than 10 ppt current dioxin ( $p=0.116$ ).

Without adjustment for covariates (Table 5-14 [b]), there is no significant variation in the association between total congenital anomalies and current dioxin with time since duty in SEA and the time of conception among full sibling children of Ranch Hands having more than 5 ppt current dioxin ( $p=0.932$ ).

Table 5-14

## Pre-post SEA Counts and Rates of Total Congenital Anomalies

Variable: Total Congenital Anomalies  
 Restrictions: Full Siblings of Ranch Hands  
 Categories: Time of Conception Relative to the Father's Duty in SEA  
 Model 2:  $\log_2(\text{Current Dioxin})$ , Time

Ranch Hands -  $\log_2(\text{Current Dioxin})$ , Time - Unadjusted

| Exposure<br>Restriction | Time of<br>Conception | Time Since<br>SEA (years) | Anomaly Rate (No./n) |                   |                  | p-Value |
|-------------------------|-----------------------|---------------------------|----------------------|-------------------|------------------|---------|
|                         |                       |                           | Low                  | Medium            | High             |         |
| a) D>10 ppt<br>(n=1032) | Pre-SEA               | ≤18.6                     | 145.2<br>(18/124)    | 141.9<br>(22/155) | 142.9<br>(5/35)  | 0.116   |
|                         |                       | >18.6                     | 82.4<br>(7/85)       | 62.9<br>(9/143)   | 130.4<br>(9/69)  |         |
|                         | Post-SEA              | ≤18.6                     | 234.0<br>(11/47)     | 234.8<br>(27/115) | 265.6<br>(17/64) |         |
|                         |                       | >18.6                     | 285.7<br>(8/28)      | 260.9<br>(24/92)  | 186.7<br>(14/75) |         |
| b) D>5 ppt<br>(n=1489)  | Pre-SEA               | ≤18.6                     | 111.1<br>(14/126)    | 152.2<br>(42/276) | 100.0<br>(6/60)  | 0.932   |
|                         |                       | >18.6                     | 82.8<br>(12/145)     | 84.4<br>(20/237)  | 113.6<br>(10/88) |         |
|                         | Post-SEA              | ≤18.6                     | 203.4<br>(12/59)     | 263.9<br>(38/144) | 214.3<br>(21/98) |         |
|                         |                       | >18.6                     | 75.5<br>(4/53)       | 292.5<br>(31/106) | 164.9<br>(16/97) |         |

## Total Congenital Anomalies (Full Siblings)

### Model 3: Children of Ranch Hands and Comparisons - Categorized Current Dioxin

Without adjustment for covariates (Table 5-15), there is no significant variation in the overall association between total congenital anomalies and categorized current dioxin with time of conception ( $p=0.336$ ) among full siblings. The association between total congenital anomalies and time of conception among children of Ranch Hands in the Low current dioxin category is borderline significantly increased relative to that among children of Comparisons in the Background category ( $p=0.089$ ). The association between total congenital anomalies and time of conception among children of Ranch Hands in the High ( $p=0.867$ ) and Unknown ( $p=0.835$ ) categories are not significantly different from that among children of Comparisons in the Background category.

Table 5-15

#### Pre-post SEA Counts and Rates of Total Congenital Anomalies

Variable: Total Congenital Anomalies  
Restrictions: Full Siblings of Ranch Hands and Comparisons  
Categories: Time of Conception Relative to the Father's Duty in SEA  
Model 3: Categorized Current Dioxin

---

#### Categorized Current Dioxin - Unadjusted

##### Time of Conception Relative to the Father's Duty in SEA

| Exposure Category | Pre-SEA |     |       | Post-SEA |     |       | Odds Ratio | Category Contrast | p-Value |
|-------------------|---------|-----|-------|----------|-----|-------|------------|-------------------|---------|
|                   | n       | Abn | Rate  | n        | Abn | Rate  |            |                   |         |
| Background        | 1250    | 147 | 117.6 | 812      | 174 | 214.3 | 2.05       | All Exp Categ     | 0.336   |
| Unknown           | 514     | 54  | 105.1 | 221      | 41  | 185.5 | 1.94       | Unk vs Bkgd       | 0.835   |
| Low               | 244     | 27  | 110.7 | 148      | 44  | 297.3 | 3.40       | Low vs Bkgd       | 0.089   |
| High              | 148     | 16  | 108.1 | 195      | 37  | 189.7 | 1.93       | High vs Bkgd      | 0.867   |
| Total             | 2156    |     |       | 1376     |     |       |            |                   |         |

## Nervous System Anomalies (All Live Births)

### Model 1: Children of Ranch Hands - $\text{Log}_2(\text{Initial Dioxin})$

There is insufficient data (Table 5-16) to assess the significance of variation in the association between nervous system anomalies and initial dioxin with time of conception among children of Ranch Hands.

Table 5-16

#### Pre-post SEA Counts and Rates of Nervous System Anomalies

Variable: Nervous System Anomalies  
Restrictions: All Children of Ranch Hands  
Categories: Time of Conception Relative to the Father's Duty in SEA  
Model 1:  $\text{Log}_2(\text{Initial Dioxin})$

---

#### Ranch Hands - $\text{Log}_2(\text{Initial Dioxin})$ - Unadjusted

##### Time of Conception Relative to the Father's Duty in SEA

| Exposure Restriction    | Initial Dioxin | n   | Pre-SEA |      | Post-SEA |     | p-Value |
|-------------------------|----------------|-----|---------|------|----------|-----|---------|
|                         |                |     | Abn     | Rate | n        | Abn |         |
| a) D>10 ppt<br>(n=1208) | Low            | 249 | 1       | 4.0  | 106      | 1   | 9.4     |
|                         | Medium         | 338 | 0       | 0.0  | 245      | 2   | 8.2     |
|                         | High           | 113 | 0       | 0.0  | 157      | 2   | 12.7    |
| b) D>5 ppt<br>(n=1748)  | Low            | 286 | 1       | 3.5  | 155      | 0   | 0.0     |
|                         | Medium         | 616 | 2       | 3.2  | 308      | 2   | 6.5     |
|                         | High           | 156 | 0       | 0.0  | 227      | 3   | 13.2    |

---

## Nervous System Anomalies (All Children)

### Model 2: Children of Ranch Hands - $\text{Log}_2(\text{Current Dioxin})$ and Time

There is insufficient data (Table 5-17) to assess the significance of variation in the association between nervous system anomalies and current dioxin with time since duty in SEA and time of conception among children of Ranch Hands.

Table 5-17

## Pre-post SEA Counts and Rates of Nervous System Anomalies

Variable: Nervous System Anomalies  
 Restrictions: All Children of Ranch Hands  
 Categories: Time of Conception Relative to the Father's Duty in SEA  
 Model 2:  $\log_2(\text{Current Dioxin})$ , Time

Ranch Hands -  $\log_2(\text{Current Dioxin})$ , Time - Unadjusted

| Exposure<br>Restriction | Time of<br>Conception | Time Since<br>SEA (years) | Anomaly Rate (No./n) |                 |                 | p-Value |
|-------------------------|-----------------------|---------------------------|----------------------|-----------------|-----------------|---------|
|                         |                       |                           | Low                  | Medium          | High            |         |
| a) D>10 ppt<br>(n=1210) | Pre-SEA               | ≤18.6                     | 0.0<br>(0/137)       | 0.0<br>(0/183)  | 0.0<br>(0/37)   |         |
|                         |                       | >18.6                     | 10.5<br>(1/95)       | 0.0<br>(0/171)  | 0.0<br>(0/78)   |         |
|                         | Post-SEA              | ≤18.6                     | 0.0<br>(0/62)        | 7.5<br>(1/134)  | 13.9<br>(1/72)  |         |
|                         |                       | >18.6                     | 25.0<br>(1/40)       | 9.3<br>(1/108)  | 10.8<br>(1/93)  |         |
| b) D>5 ppt<br>(n=1748)  | Pre-SEA               | ≤18.6                     | 0.0<br>(0/157)       | 3.2<br>(1/313)  | 0.0<br>(0/66)   |         |
|                         |                       | >18.6                     | 6.7<br>(1/150)       | 3.7<br>(1/270)  | 0.0<br>(0/102)  |         |
|                         | Post-SEA              | ≤18.6                     | 0.0<br>(0/90)        | 0.0<br>(0/174)  | 18.2<br>(2/110) |         |
|                         |                       | >18.6                     | 0.0<br>(0/63)        | 14.7<br>(2/136) | 8.5<br>(1/117)  |         |

## Nervous System Anomalies (All Children)

## Model 3: Children of Ranch Hands and Comparisons - Categorized Current Dioxin

There is insufficient data (Table 5-18) to assess the significance of variation in the association between nervous system anomalies and categorized current dioxin with time of conception.

Table 5-18

## Pre-post SEA Counts and Rates of Nervous System Anomalies

Variable: Nervous System Anomalies  
 Restrictions: All Children of Ranch Hands and Comparisons  
 Categories: Time of Conception Relative to the Father's Duty in SEA  
 Model 3: Categorized Current Dioxin

## Categorized Current Dioxin - Unadjusted

Time of Conception Relative to the Father's Duty in SEA

| Exposure Category | Pre-SEA |     |      | Post-SEA |     |      | Odds Ratio | Category Contrast | p-Value |
|-------------------|---------|-----|------|----------|-----|------|------------|-------------------|---------|
|                   | n       | Abn | Rate | n        | Abn | Rate |            |                   |         |
| Background        | 1459    | 7   | 4.8  | 981      | 3   | 3.1  | 0.64       | All Exp Categ     |         |
| Unknown           | 582     | 3   | 5.2  | 282      | 0   | 0.0  | ----       | Unk vs Bkgd       |         |
| Low               | 290     | 0   | 0.0  | 174      | 1   | 5.7  | ----       | Low vs Bkgd       |         |
| High              | 168     | 0   | 0.0  | 227      | 3   | 13.2 | ----       | High vs Bkgd      |         |
| Total             | 2499    |     |      | 1664     |     |      |            |                   |         |

## Nervous System Anomalies (Full Siblings)

Model 1: Children of Ranch Hands -  $\log_2$ (Initial Dioxin)

There is insufficient data (Table 5-19) to assess the significance of variation in the association between nervous system anomalies and initial dioxin with time of conception among full sibling children of Ranch Hands.

**Table 5-19**  
**Pre-post SEA Counts and Rates of**  
**Nervous System Anomalies**

Variable: Nervous System Anomalies  
 Restrictions: Full Siblings of Ranch Hands  
 Categories: Time of Conception Relative to the  
                  Father's Duty in SEA  
 Model 1:  $\text{Log}_2(\text{Initial Dioxin})$

**Ranch Hands -  $\text{Log}_2(\text{Initial Dioxin})$  - Unadjusted**

Time of Conception Relative  
                  to the Father's Duty in SEA

| Exposure<br>Restriction | Initial<br>Dioxin | Pre-SEA |     |      | Post-SEA |     |      | p-Value |
|-------------------------|-------------------|---------|-----|------|----------|-----|------|---------|
|                         |                   | n       | Abn | Rate | n        | Abn | Rate |         |
| a) D>10 ppt<br>(n=1030) | Low               | 231     | 1   | 4.3  | 78       | 0   | 0.0  |         |
|                         | Medium            | 276     | 0   | 0.0  | 206      | 2   | 9.7  |         |
|                         | High              | 103     | 0   | 0.0  | 136      | 2   | 14.7 |         |
| b) D>5 ppt<br>(n=1489)  | Low               | 252     | 1   | 4.0  | 114      | 0   | 0.0  |         |
|                         | Medium            | 545     | 2   | 3.7  | 245      | 1   | 4.1  |         |
|                         | High              | 135     | 0   | 0.0  | 198      | 3   | 15.2 |         |

**Nervous System Anomalies (Full Siblings)**

**Model 2: Children of Ranch Hands -  $\text{Log}_2(\text{Current Dioxin})$  and Time**

There is insufficient data (Table 5-20) to assess the significance of variation in the association between nervous system anomalies and current dioxin with time since duty in SEA and time of conception among full sibling children of Ranch Hands.

Table 5-20

Pre-post SEA Counts and Rates of  
Nervous System Anomalies

Variable: Nervous System Anomalies  
 Restrictions: Full Siblings of Ranch Hands  
 Categories: Time of Conception Relative to the  
                  Father's Duty in SEA  
 Model 2:  $\log_2(\text{Current Dioxin})$ , Time

Ranch Hands -  $\log_2(\text{Current Dioxin})$ , Time - Unadjusted

| Exposure<br>Restriction | Time of<br>Conception | Time Since<br>SEA (years) | Anomaly Rate (No./n) |                |                | p-Value |
|-------------------------|-----------------------|---------------------------|----------------------|----------------|----------------|---------|
|                         |                       |                           | Low                  | Medium         | High           |         |
| a) D>10 ppt<br>(n=1032) | Pre-SEA               | ≤18.6                     | 0.0<br>(0/124)       | 0.0<br>(0/155) | 0.0<br>(0/35)  |         |
|                         |                       | >18.6                     | 11.8<br>(1/85)       | 0.0<br>(0/143) | 0.0<br>(0/69)  |         |
|                         | Post-SEA              | ≤18.6                     | 0.0<br>(0/47)        | 8.7<br>(1/115) | 15.6<br>(1/64) |         |
|                         |                       | >18.6                     | 0.0<br>(0/28)        | 10.9<br>(1/92) | 13.3<br>(1/75) |         |
| b) D>5 ppt<br>(n=1489)  | Pre-SEA               | ≤18.6                     | 0.0<br>(0/126)       | 3.6<br>(1/276) | 0.0<br>(0/60)  |         |
|                         |                       | >18.6                     | 6.9<br>(1/145)       | 4.2<br>(1/237) | 0.0<br>(0/88)  |         |
|                         | Post-SEA              | ≤18.6                     | 0.0<br>(0/59)        | 0.0<br>(0/144) | 20.4<br>(2/98) |         |
|                         |                       | >18.6                     | 0.0<br>(0/53)        | 9.4<br>(1/106) | 10.3<br>(1/97) |         |

## Nervous System Anomalies (Full Siblings)

### Model 3: Children of Ranch Hands and Comparisons - Categorized Current Dioxin

There is insufficient data (Table 5-21) to assess variation in the association between nervous system anomalies and categorized current dioxin with time of conception among full siblings.

Table 5-21

#### Pre-post SEA Counts and Rates of Nervous System Anomalies

Variable: Nervous System Anomalies  
Restrictions: Full Siblings of Ranch Hands and Comparisons  
Categories: Time of Conception Relative to the Father's Duty in SEA  
Model 3: Categorized Current Dioxin

#### Categorized Current Dioxin - Unadjusted

Time of Conception Relative to the Father's Duty in SEA

| Exposure Category |      | Pre-SEA |      |      | Post-SEA |      |      | Odds Ratio    | Category Contrast | p-Value |
|-------------------|------|---------|------|------|----------|------|------|---------------|-------------------|---------|
|                   | n    | Abn     | Rate | n    | Abn      | Rate |      |               |                   |         |
| Background        | 1250 | 6       | 4.8  | 812  | 3        | 3.7  | 0.77 | All Exp Categ |                   |         |
| Unknown           | 514  | 3       | 5.8  | 221  | 0        | 0.0  | ---- | Unk vs Bkgd   |                   |         |
| Low               | 244  | 0       | 0.0  | 148  | 1        | 6.8  | ---- | Low vs Bkgd   |                   |         |
| High              | 148  | 0       | 0.0  | 195  | 3        | 15.4 | ---- | High vs Bkgd  |                   |         |
| Total             | 2156 |         |      | 1376 |          |      |      |               |                   |         |

#### Eye Anomalies (All Children)

### Model 1: Children of Ranch Hands - $\log_2$ (Initial Dioxin)

There is insufficient data (Table 5-22) to assess the significance of variation in the association between eye anomalies and initial dioxin with time of conception among children of Ranch Hands.

Table 5-22

## Pre-post SEA Counts and Rates of Eye Anomalies

Variable: Eye Anomalies  
 Restrictions: All Children of Ranch Hands  
 Categories: Time of Conception Relative to the Father's Duty in SEA  
 Model 1:  $\log_2$ (Initial Dioxin)

Ranch Hands -  $\log_2$ (Initial Dioxin) - Unadjusted

Time of Conception Relative to the Father's Duty in SEA

| Exposure Restriction    | Initial Dioxin | Pre-SEA |     |      | Post-SEA |     |      | p-Value |
|-------------------------|----------------|---------|-----|------|----------|-----|------|---------|
|                         |                | n       | Abn | Rate | n        | Abn | Rate |         |
| a) D>10 ppt<br>(n=1208) | Low            | 249     | 1   | 4.0  | 106      | 0   | 0.0  |         |
|                         | Medium         | 338     | 1   | 3.0  | 245      | 3   | 12.2 |         |
|                         | High           | 113     | 0   | 0.0  | 157      | 2   | 12.7 |         |
| b) D>5 ppt<br>(n=1748)  | Low            | 286     | 2   | 7.0  | 155      | 2   | 12.9 |         |
|                         | Medium         | 616     | 2   | 3.2  | 308      | 2   | 6.5  |         |
|                         | High           | 156     | 0   | 0.0  | 227      | 3   | 13.2 |         |

## Eye Anomalies (All Children)

Model 2: Children of Ranch Hands -  $\log_2$ (Current Dioxin) and Time

There is insufficient data (Table 5-23) to assess the significance of variation in the association between eye anomalies and current dioxin with time since duty in SEA and time of conception.

Table 5-23

## Pre-post SEA Counts and Rates of Eye Anomalies

Variable: Eye Anomalies  
 Restrictions: All Children of Ranch Hands  
 Categories: Time of Conception Relative to the Father's Duty in SEA  
 Model 2:  $\log_2(\text{Current Dioxin})$ , Time

Ranch Hands -  $\log_2(\text{Current Dioxin})$ , Time - Unadjusted

| Exposure<br>Restriction | Time of<br>Conception | Time Since<br>SEA (years) | Anomaly Rate (No./n) |                 |                 | p-Value |
|-------------------------|-----------------------|---------------------------|----------------------|-----------------|-----------------|---------|
|                         |                       |                           | Low                  | Medium          | High            |         |
| a) D>10 ppt<br>(n=1210) | Pre-SEA               | ≤18.6                     | 7.3<br>(1/137)       | 5.5<br>(1/183)  | 0.0<br>(0/37)   |         |
|                         |                       | >18.6                     | 0.0<br>(0/95)        | 0.0<br>(0/171)  | 0.0<br>(0/78)   |         |
|                         | Post-SEA              | ≤18.6                     | 0.0<br>(0/62)        | 14.9<br>(2/134) | 13.9<br>(1/72)  |         |
|                         |                       | >18.6                     | 25.0<br>(1/40)       | 0.0<br>(0/108)  | 10.8<br>(1/93)  |         |
| b) D>5 ppt<br>(n=1748)  | Pre-SEA               | ≤18.6                     | 6.4<br>(1/157)       | 6.4<br>(2/313)  | 0.0<br>(0/66)   |         |
|                         |                       | >18.6                     | 6.7<br>(1/150)       | 0.0<br>(0/270)  | 0.0<br>(0/102)  |         |
|                         | Post-SEA              | ≤18.6                     | 11.1<br>(1/90)       | 11.5<br>(2/174) | 18.2<br>(2/110) |         |
|                         |                       | >18.6                     | 0.0<br>(0/63)        | 7.4<br>(1/136)  | 8.5<br>(1/117)  |         |

## Eye Anomalies (All Children)

## Model 3: Children of Ranch Hands and Comparisons - Categorized Current Dioxin

There is insufficient data (Table 5-24) to assess the significance of variation in the association between eye anomalies and categorized current dioxin with time of conception.

Table 5-24

## Pre-post SEA Counts and Rates of Eye Anomalies

Variable: Eye Anomalies  
 Restrictions: All Children of Ranch Hands and Comparisons  
 Categories: Time of Conception Relative to the Father's Duty in SEA  
 Model 3: Categorized Current Dioxin

## Categorized Current Dioxin - Unadjusted

Time of Conception Relative to the Father's Duty in SEA

| Exposure Category | Pre-SEA |     |      | Post-SEA |     |      | Odds Ratio | Category Contrast | p-Value |
|-------------------|---------|-----|------|----------|-----|------|------------|-------------------|---------|
|                   | n       | Abn | Rate | n        | Abn | Rate |            |                   |         |
| Background        | 1459    | 6   | 4.1  | 981      | 7   | 7.1  |            | All Exp Categ     |         |
| Unknown           | 582     | 4   | 6.9  | 282      | 4   | 14.2 |            | Unk vs Bkgd       |         |
| Low               | 290     | 1   | 3.4  | 174      | 1   | 5.7  |            | Low vs Bkgd       |         |
| High              | 168     | 0   | 0.0  | 227      | 3   | 13.2 |            | High vs Bkgd      |         |
| Total             | 2499    |     |      | 1664     |     |      |            |                   |         |

## Eye Anomalies (Full Siblings)

Model 1: Children of Ranch Hands -  $\log_2$ (Initial Dioxin)

There is insufficient data (Table 5-25) to assess the significance of variation in the association between eye anomalies and initial dioxin with time of conception among full sibling children of Ranch Hands.

Table 5-25

## Pre-post SEA Counts and Rates of Eye Anomalies

Variable: Eye Anomalies  
 Restrictions: Full Siblings of Ranch Hands  
 Categories: Time of Conception Relative to the Father's Duty in SEA  
 Model 1:  $\log_2(\text{Initial Dioxin})$

Ranch Hands -  $\log_2(\text{Initial Dioxin})$  - Unadjusted

## Time of Conception Relative to the Father's Duty in SEA

| Exposure<br>Restriction | Initial<br>Dioxin | Pre-SEA |     |      | Post-SEA |     |      | p-Value |
|-------------------------|-------------------|---------|-----|------|----------|-----|------|---------|
|                         |                   | n       | Abn | Rate | n        | Abn | Rate |         |
| a) D>10 ppt<br>(n=1030) | Low               | 231     | 1   | 4.3  | 78       | 0   | 0.0  |         |
|                         | Medium            | 276     | 0   | 0.0  | 206      | 3   | 14.6 |         |
|                         | High              | 103     | 0   | 0.0  | 136      | 2   | 14.7 |         |
| b) D>5 ppt<br>(n=1489)  | Low               | 252     | 2   | 7.9  | 114      | 1   | 8.8  |         |
|                         | Medium            | 545     | 1   | 1.8  | 245      | 2   | 8.2  |         |
|                         | High              | 135     | 0   | 0.0  | 198      | 3   | 15.2 |         |

## Eye Anomalies (Full Siblings)

Model 2: Children of Ranch Hands -  $\log_2(\text{Current Dioxin})$  and Time

There is insufficient data with which to assess the significance of variation in the association between eye anomalies and current dioxin with time since duty in SEA and time of conception among full sibling children of Ranch Hands (Table 5-26 [a] and [b]).

**Table 5-26**  
**Pre-post SEA Counts and Rates of Eye Anomalies**

**Variable:** Eye Anomalies  
**Restrictions:** Full Siblings of Ranch Hands  
**Categories:** Time of Conception Relative to the Father's Duty in SEA  
**Model 2:**  $\log_2(\text{Current Dioxin})$ , Time

**Ranch Hands -  $\log_2(\text{Current Dioxin})$ , Time - Unadjusted**

| Exposure Restriction    | Time of Conception | Time Since SEA (years) | Anomaly Rate (No./n)  |                 |                | p-Value |
|-------------------------|--------------------|------------------------|-----------------------|-----------------|----------------|---------|
|                         |                    |                        | Current Dioxin<br>Low | Medium          | High           |         |
| a) D>10 ppt<br>(n=1032) | Pre-SEA            | ≤18.6                  | 8.1<br>(1/124)        | 0.0<br>(0/155)  | 0.0<br>(0/35)  |         |
|                         |                    | >18.6                  | 0.0<br>(0/85)         | 0.0<br>(0/143)  | 0.0<br>(0/69)  |         |
|                         | Post-SEA           | ≤18.6                  | 0.0<br>(0/47)         | 17.4<br>(2/115) | 15.6<br>(1/64) |         |
|                         |                    | >18.6                  | 35.7<br>(1/28)        | 0.0<br>(0/92)   | 13.3<br>(1/75) |         |
| b) D>5 ppt<br>(n=1489)  | Pre-SEA            | ≤18.6                  | 7.9<br>(1/126)        | 3.6<br>(1/276)  | 0.0<br>(0/60)  |         |
|                         |                    | >18.6                  | 6.9<br>(1/145)        | 0.0<br>(0/237)  | 0.0<br>(0/88)  |         |
|                         | Post-SEA           | ≤18.6                  | 0.0<br>(0/59)         | 13.9<br>(2/144) | 20.4<br>(2/98) |         |
|                         |                    | >18.6                  | 0.0<br>(0/53)         | 9.4<br>(1/106)  | 10.3<br>(1/97) |         |

**Eye Anomalies (Full Siblings)**

**Model 3: Children of Ranch Hands and Comparisons - Categorized Current Dioxin**

There is insufficient data (Table 5-27) to assess the significance of the variation in the association between eye anomalies and categorized current dioxin with time of conception among full siblings.